Marita Wagner, Ada Herrero-Ruiz, Ester Verde-Sesto, Isabel Asenjo-Sanz and Luis M. Liz-Marzán*,
{"title":"聚乙烯基吡咯烷酮合成条件对金纳米星形成的影响","authors":"Marita Wagner, Ada Herrero-Ruiz, Ester Verde-Sesto, Isabel Asenjo-Sanz and Luis M. Liz-Marzán*, ","doi":"10.1021/acs.chemmater.4c0251310.1021/acs.chemmater.4c02513","DOIUrl":null,"url":null,"abstract":"<p >The chemical synthesis of nanomaterials has been a driving force in the advancement of nanoscience and nanotechnology. However, minor changes in the composition of the reactants and the presence of impurities can significantly alter the outcome of synthetic procedures that have been developed for a wide range of nanomaterials. The synthesis of gold nanostars (AuNSt) using poly(vinylpyrrolidone) (PVP) in <i>N</i>,<i>N</i>-dimethylformamide (DMF) is no exception to this issue, as several studies have reported PVP batch dependency of the synthesis. In this context, we set to analyze commercial PVP using <sup>1</sup>H NMR and show that only those containing certain impurities are suitable for the synthesis of AuNSt. Following this finding, we synthesized our own PVP with the aim of replicating the synthesis conditions of commercial PVP, including its impurities. The results confirm that PVP synthesized using hydrogen peroxide as a radical initiator and ammonium hydroxide or calcium carbonate as the base, are suitable for the formation of AuNSt. Additionally, the base used in PVP synthesis was found to influence the reaction kinetics and, in turn, the shape of the resulting AuNSt. Control reactions with purified PVP show drastically decreased nanoparticle anisotropy, suggesting that the star shape is strongly dependent on the impurity profile, resulting from the selected PVP synthetic pathway. We present a solution toward customizing AuNSt shape via PVP synthesis and avoiding dependence on commercial PVP.</p>","PeriodicalId":33,"journal":{"name":"Chemistry of Materials","volume":"37 2","pages":"644–654 644–654"},"PeriodicalIF":7.0000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Influence of Poly(vinylpyrrolidone) Synthesis Conditions on the Formation of Gold Nanostars\",\"authors\":\"Marita Wagner, Ada Herrero-Ruiz, Ester Verde-Sesto, Isabel Asenjo-Sanz and Luis M. Liz-Marzán*, \",\"doi\":\"10.1021/acs.chemmater.4c0251310.1021/acs.chemmater.4c02513\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The chemical synthesis of nanomaterials has been a driving force in the advancement of nanoscience and nanotechnology. However, minor changes in the composition of the reactants and the presence of impurities can significantly alter the outcome of synthetic procedures that have been developed for a wide range of nanomaterials. The synthesis of gold nanostars (AuNSt) using poly(vinylpyrrolidone) (PVP) in <i>N</i>,<i>N</i>-dimethylformamide (DMF) is no exception to this issue, as several studies have reported PVP batch dependency of the synthesis. In this context, we set to analyze commercial PVP using <sup>1</sup>H NMR and show that only those containing certain impurities are suitable for the synthesis of AuNSt. Following this finding, we synthesized our own PVP with the aim of replicating the synthesis conditions of commercial PVP, including its impurities. The results confirm that PVP synthesized using hydrogen peroxide as a radical initiator and ammonium hydroxide or calcium carbonate as the base, are suitable for the formation of AuNSt. Additionally, the base used in PVP synthesis was found to influence the reaction kinetics and, in turn, the shape of the resulting AuNSt. Control reactions with purified PVP show drastically decreased nanoparticle anisotropy, suggesting that the star shape is strongly dependent on the impurity profile, resulting from the selected PVP synthetic pathway. We present a solution toward customizing AuNSt shape via PVP synthesis and avoiding dependence on commercial PVP.</p>\",\"PeriodicalId\":33,\"journal\":{\"name\":\"Chemistry of Materials\",\"volume\":\"37 2\",\"pages\":\"644–654 644–654\"},\"PeriodicalIF\":7.0000,\"publicationDate\":\"2025-01-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemistry of Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.chemmater.4c02513\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry of Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.chemmater.4c02513","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Influence of Poly(vinylpyrrolidone) Synthesis Conditions on the Formation of Gold Nanostars
The chemical synthesis of nanomaterials has been a driving force in the advancement of nanoscience and nanotechnology. However, minor changes in the composition of the reactants and the presence of impurities can significantly alter the outcome of synthetic procedures that have been developed for a wide range of nanomaterials. The synthesis of gold nanostars (AuNSt) using poly(vinylpyrrolidone) (PVP) in N,N-dimethylformamide (DMF) is no exception to this issue, as several studies have reported PVP batch dependency of the synthesis. In this context, we set to analyze commercial PVP using 1H NMR and show that only those containing certain impurities are suitable for the synthesis of AuNSt. Following this finding, we synthesized our own PVP with the aim of replicating the synthesis conditions of commercial PVP, including its impurities. The results confirm that PVP synthesized using hydrogen peroxide as a radical initiator and ammonium hydroxide or calcium carbonate as the base, are suitable for the formation of AuNSt. Additionally, the base used in PVP synthesis was found to influence the reaction kinetics and, in turn, the shape of the resulting AuNSt. Control reactions with purified PVP show drastically decreased nanoparticle anisotropy, suggesting that the star shape is strongly dependent on the impurity profile, resulting from the selected PVP synthetic pathway. We present a solution toward customizing AuNSt shape via PVP synthesis and avoiding dependence on commercial PVP.
期刊介绍:
The journal Chemistry of Materials focuses on publishing original research at the intersection of materials science and chemistry. The studies published in the journal involve chemistry as a prominent component and explore topics such as the design, synthesis, characterization, processing, understanding, and application of functional or potentially functional materials. The journal covers various areas of interest, including inorganic and organic solid-state chemistry, nanomaterials, biomaterials, thin films and polymers, and composite/hybrid materials. The journal particularly seeks papers that highlight the creation or development of innovative materials with novel optical, electrical, magnetic, catalytic, or mechanical properties. It is essential that manuscripts on these topics have a primary focus on the chemistry of materials and represent a significant advancement compared to prior research. Before external reviews are sought, submitted manuscripts undergo a review process by a minimum of two editors to ensure their appropriateness for the journal and the presence of sufficient evidence of a significant advance that will be of broad interest to the materials chemistry community.