磁离子突触中权重更新线性的动态控制

IF 9.1 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Guillaume Bernard, Kellian Cottart, Maria-Andromachi Syskaki, Victor Porée, Andrea Resta, Alessandro Nicolaou, Alan Durnez, Shimpei Ono, Ariam Mora Hernandez, Juergen Langer, Damien Querlioz and Liza Herrera Diez*, 
{"title":"磁离子突触中权重更新线性的动态控制","authors":"Guillaume Bernard,&nbsp;Kellian Cottart,&nbsp;Maria-Andromachi Syskaki,&nbsp;Victor Porée,&nbsp;Andrea Resta,&nbsp;Alessandro Nicolaou,&nbsp;Alan Durnez,&nbsp;Shimpei Ono,&nbsp;Ariam Mora Hernandez,&nbsp;Juergen Langer,&nbsp;Damien Querlioz and Liza Herrera Diez*,&nbsp;","doi":"10.1021/acs.nanolett.4c0524710.1021/acs.nanolett.4c05247","DOIUrl":null,"url":null,"abstract":"<p >Multifunctional hardware technologies for neuromorphic computing are essential for replicating the complexity of biological neural systems, thereby improving the performance of artificial synapses and neurons. Integrating ionic and spintronic technologies offers new degrees of freedom to modulate synaptic potentiation and depression, introducing novel magnetic functionalities alongside the established ionic analogue behavior. We demonstrate that magneto-ionic devices can perform as synaptic elements with dynamically tunable depression linearity controlled by an external magnetic field, a functionality reminiscent of neuromodulation in biological systems. By applying magnetic fields we significantly reduce the nonlinearity of synaptic depression, transitioning from an exponential dependence to a linear response at higher fields. Neural network simulations reveal that this magnetically induced linearity enhancement improves learning accuracy across a wide range of learning rates, which is retained after the magnetic field is removed. These findings highlight the versatility and promise of magneto-ionic devices for developing tunable synaptic elements for neuromorphic hardware.</p>","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":"25 4","pages":"1443–1450 1443–1450"},"PeriodicalIF":9.1000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamic Control of Weight-Update Linearity in Magneto-Ionic Synapses\",\"authors\":\"Guillaume Bernard,&nbsp;Kellian Cottart,&nbsp;Maria-Andromachi Syskaki,&nbsp;Victor Porée,&nbsp;Andrea Resta,&nbsp;Alessandro Nicolaou,&nbsp;Alan Durnez,&nbsp;Shimpei Ono,&nbsp;Ariam Mora Hernandez,&nbsp;Juergen Langer,&nbsp;Damien Querlioz and Liza Herrera Diez*,&nbsp;\",\"doi\":\"10.1021/acs.nanolett.4c0524710.1021/acs.nanolett.4c05247\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Multifunctional hardware technologies for neuromorphic computing are essential for replicating the complexity of biological neural systems, thereby improving the performance of artificial synapses and neurons. Integrating ionic and spintronic technologies offers new degrees of freedom to modulate synaptic potentiation and depression, introducing novel magnetic functionalities alongside the established ionic analogue behavior. We demonstrate that magneto-ionic devices can perform as synaptic elements with dynamically tunable depression linearity controlled by an external magnetic field, a functionality reminiscent of neuromodulation in biological systems. By applying magnetic fields we significantly reduce the nonlinearity of synaptic depression, transitioning from an exponential dependence to a linear response at higher fields. Neural network simulations reveal that this magnetically induced linearity enhancement improves learning accuracy across a wide range of learning rates, which is retained after the magnetic field is removed. These findings highlight the versatility and promise of magneto-ionic devices for developing tunable synaptic elements for neuromorphic hardware.</p>\",\"PeriodicalId\":53,\"journal\":{\"name\":\"Nano Letters\",\"volume\":\"25 4\",\"pages\":\"1443–1450 1443–1450\"},\"PeriodicalIF\":9.1000,\"publicationDate\":\"2025-01-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.nanolett.4c05247\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.nanolett.4c05247","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

神经形态计算的多功能硬件技术对于复制生物神经系统的复杂性至关重要,从而提高人工突触和神经元的性能。结合离子和自旋电子技术为调节突触增强和抑制提供了新的自由度,在已建立的离子模拟行为的基础上引入了新的磁功能。我们证明了磁离子器件可以作为由外部磁场控制的具有动态可调抑制线性的突触元件,这种功能让人想起生物系统中的神经调节。通过施加磁场,我们显著降低了突触抑制的非线性,在更高的磁场下从指数依赖转变为线性响应。神经网络模拟表明,这种磁诱导线性增强提高了学习精度,在很大的学习速率范围内,这在磁场去除后仍然保持不变。这些发现突出了磁离子装置在开发神经形态硬件可调突触元件方面的多功能性和前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Dynamic Control of Weight-Update Linearity in Magneto-Ionic Synapses

Dynamic Control of Weight-Update Linearity in Magneto-Ionic Synapses

Multifunctional hardware technologies for neuromorphic computing are essential for replicating the complexity of biological neural systems, thereby improving the performance of artificial synapses and neurons. Integrating ionic and spintronic technologies offers new degrees of freedom to modulate synaptic potentiation and depression, introducing novel magnetic functionalities alongside the established ionic analogue behavior. We demonstrate that magneto-ionic devices can perform as synaptic elements with dynamically tunable depression linearity controlled by an external magnetic field, a functionality reminiscent of neuromodulation in biological systems. By applying magnetic fields we significantly reduce the nonlinearity of synaptic depression, transitioning from an exponential dependence to a linear response at higher fields. Neural network simulations reveal that this magnetically induced linearity enhancement improves learning accuracy across a wide range of learning rates, which is retained after the magnetic field is removed. These findings highlight the versatility and promise of magneto-ionic devices for developing tunable synaptic elements for neuromorphic hardware.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nano Letters
Nano Letters 工程技术-材料科学:综合
CiteScore
16.80
自引率
2.80%
发文量
1182
审稿时长
1.4 months
期刊介绍: Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including: - Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale - Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies - Modeling and simulation of synthetic, assembly, and interaction processes - Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance - Applications of nanoscale materials in living and environmental systems Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信