近红外(NIR)表面增强拉曼散射(SERS)衬底的快速冷冻诱导金纳米颗粒聚集体(QFIAAs

IF 3.9 2区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Kristopher W. Hoyt, Ashleigh C. Block, Jillian Tung, M. Scott Goodman, Igor K. Lednev and Jinseok Heo*, 
{"title":"近红外(NIR)表面增强拉曼散射(SERS)衬底的快速冷冻诱导金纳米颗粒聚集体(QFIAAs","authors":"Kristopher W. Hoyt,&nbsp;Ashleigh C. Block,&nbsp;Jillian Tung,&nbsp;M. Scott Goodman,&nbsp;Igor K. Lednev and Jinseok Heo*,&nbsp;","doi":"10.1021/acs.langmuir.4c0384210.1021/acs.langmuir.4c03842","DOIUrl":null,"url":null,"abstract":"<p >Here, we report a simple method to prepare near-IR (NIR) surface-enhanced Raman scattering (SERS) substrates by quickly freezing a citrate-capped Au nanoparticle (AuNP) solution in liquid nitrogen, followed by thawing it at room temperature. This process aggregates AuNPs in a controlled manner by forming ice crystals with smaller grain sizes when compared to a slow freezing process. The resulting smaller AuNP aggregates remain suspended in solution long enough to conduct high-throughput chemical analysis in a microwell plate using the NIR SERS spectroscopy. We named these aggregates quick freezing-induced AuNP aggregates (QFIAAs). The aggregation state of QFIAAs in solution is stable for at least three months when stored at 4 °C. Several QFIAAs were prepared using monodisperse citrate-capped AuNPs of various sizes. QFIAAs prepared from AuNPs with an average diameter of 70 nm (70 nm QFIAAs) showed the best performance, considering both NIR SERS activity and the repeatability of the results. The NIR SERS enhancement factor of the 70 nm QFIAAs measured using 57 nM Rhodamine 6G (R6G) was 5 × 10<sup>4</sup>. The R6G molecules could not displace the citrates present in the hotspots of QFIAAs, indicating that the long-term stability of QFIAAs originates from the tight interparticle binding through the citrates. The limit of detection (LOD) of R6G was 2 × 10<sup>1</sup> nM using the 70 nm QFIAAs. We anticipate that the QFIAA system can be used not only to screen reporter molecules for the NIR SERS bioimaging but also to detect analytes with background fluorescence that can be suppressed with NIR excitation wavelengths.</p>","PeriodicalId":50,"journal":{"name":"Langmuir","volume":"41 4","pages":"2300–2311 2300–2311"},"PeriodicalIF":3.9000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quick Freezing-Induced Au Nanoparticle Aggregates (QFIAAs) for Near-IR (NIR) Surface-Enhanced Raman Scattering (SERS) Substrates\",\"authors\":\"Kristopher W. Hoyt,&nbsp;Ashleigh C. Block,&nbsp;Jillian Tung,&nbsp;M. Scott Goodman,&nbsp;Igor K. Lednev and Jinseok Heo*,&nbsp;\",\"doi\":\"10.1021/acs.langmuir.4c0384210.1021/acs.langmuir.4c03842\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Here, we report a simple method to prepare near-IR (NIR) surface-enhanced Raman scattering (SERS) substrates by quickly freezing a citrate-capped Au nanoparticle (AuNP) solution in liquid nitrogen, followed by thawing it at room temperature. This process aggregates AuNPs in a controlled manner by forming ice crystals with smaller grain sizes when compared to a slow freezing process. The resulting smaller AuNP aggregates remain suspended in solution long enough to conduct high-throughput chemical analysis in a microwell plate using the NIR SERS spectroscopy. We named these aggregates quick freezing-induced AuNP aggregates (QFIAAs). The aggregation state of QFIAAs in solution is stable for at least three months when stored at 4 °C. Several QFIAAs were prepared using monodisperse citrate-capped AuNPs of various sizes. QFIAAs prepared from AuNPs with an average diameter of 70 nm (70 nm QFIAAs) showed the best performance, considering both NIR SERS activity and the repeatability of the results. The NIR SERS enhancement factor of the 70 nm QFIAAs measured using 57 nM Rhodamine 6G (R6G) was 5 × 10<sup>4</sup>. The R6G molecules could not displace the citrates present in the hotspots of QFIAAs, indicating that the long-term stability of QFIAAs originates from the tight interparticle binding through the citrates. The limit of detection (LOD) of R6G was 2 × 10<sup>1</sup> nM using the 70 nm QFIAAs. We anticipate that the QFIAA system can be used not only to screen reporter molecules for the NIR SERS bioimaging but also to detect analytes with background fluorescence that can be suppressed with NIR excitation wavelengths.</p>\",\"PeriodicalId\":50,\"journal\":{\"name\":\"Langmuir\",\"volume\":\"41 4\",\"pages\":\"2300–2311 2300–2311\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-01-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Langmuir\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.langmuir.4c03842\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Langmuir","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.langmuir.4c03842","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在这里,我们报告了一种制备近红外(NIR)表面增强拉曼散射(SERS)衬底的简单方法:将柠檬酸盐覆盖的Au纳米颗粒(AuNP)溶液快速冷冻在液氮中,然后在室温下解冻。与缓慢的冷冻过程相比,该过程通过形成颗粒尺寸较小的冰晶,以受控的方式聚集aunp。所得的较小的AuNP聚集体在溶液中悬浮的时间足够长,可以在微孔板上使用近红外SERS光谱进行高通量化学分析。我们将这些聚集体命名为速冻诱导AuNP聚集体(qfiaa)。在4°C条件下,qfiaa在溶液中的聚集状态至少稳定3个月。用不同大小的单分散柠檬酸盐包盖aunp制备了几个qfiaa。从近红外SERS活性和结果的重复性两方面考虑,平均直径为70 nm的AuNPs制备的qfiaa (70 nm qfiaa)表现出最好的性能。57 nm罗丹明6G (R6G)对70 nm qfiaa的近红外SERS增强因子为5 × 104。R6G分子不能取代存在于qfiaa热点的柠檬酸盐,表明qfiaa的长期稳定性源于通过柠檬酸盐的紧密粒子间结合。采用70 nM的qfiaa, R6G的检出限为2 × 101 nM。我们期望QFIAA系统不仅可以用于筛选近红外SERS生物成像的报告分子,还可以用于检测具有近红外激发波长可以抑制的背景荧光的分析物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Quick Freezing-Induced Au Nanoparticle Aggregates (QFIAAs) for Near-IR (NIR) Surface-Enhanced Raman Scattering (SERS) Substrates

Quick Freezing-Induced Au Nanoparticle Aggregates (QFIAAs) for Near-IR (NIR) Surface-Enhanced Raman Scattering (SERS) Substrates

Here, we report a simple method to prepare near-IR (NIR) surface-enhanced Raman scattering (SERS) substrates by quickly freezing a citrate-capped Au nanoparticle (AuNP) solution in liquid nitrogen, followed by thawing it at room temperature. This process aggregates AuNPs in a controlled manner by forming ice crystals with smaller grain sizes when compared to a slow freezing process. The resulting smaller AuNP aggregates remain suspended in solution long enough to conduct high-throughput chemical analysis in a microwell plate using the NIR SERS spectroscopy. We named these aggregates quick freezing-induced AuNP aggregates (QFIAAs). The aggregation state of QFIAAs in solution is stable for at least three months when stored at 4 °C. Several QFIAAs were prepared using monodisperse citrate-capped AuNPs of various sizes. QFIAAs prepared from AuNPs with an average diameter of 70 nm (70 nm QFIAAs) showed the best performance, considering both NIR SERS activity and the repeatability of the results. The NIR SERS enhancement factor of the 70 nm QFIAAs measured using 57 nM Rhodamine 6G (R6G) was 5 × 104. The R6G molecules could not displace the citrates present in the hotspots of QFIAAs, indicating that the long-term stability of QFIAAs originates from the tight interparticle binding through the citrates. The limit of detection (LOD) of R6G was 2 × 101 nM using the 70 nm QFIAAs. We anticipate that the QFIAA system can be used not only to screen reporter molecules for the NIR SERS bioimaging but also to detect analytes with background fluorescence that can be suppressed with NIR excitation wavelengths.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Langmuir
Langmuir 化学-材料科学:综合
CiteScore
6.50
自引率
10.30%
发文量
1464
审稿时长
2.1 months
期刊介绍: Langmuir is an interdisciplinary journal publishing articles in the following subject categories: Colloids: surfactants and self-assembly, dispersions, emulsions, foams Interfaces: adsorption, reactions, films, forces Biological Interfaces: biocolloids, biomolecular and biomimetic materials Materials: nano- and mesostructured materials, polymers, gels, liquid crystals Electrochemistry: interfacial charge transfer, charge transport, electrocatalysis, electrokinetic phenomena, bioelectrochemistry Devices and Applications: sensors, fluidics, patterning, catalysis, photonic crystals However, when high-impact, original work is submitted that does not fit within the above categories, decisions to accept or decline such papers will be based on one criteria: What Would Irving Do? Langmuir ranks #2 in citations out of 136 journals in the category of Physical Chemistry with 113,157 total citations. The journal received an Impact Factor of 4.384*. This journal is also indexed in the categories of Materials Science (ranked #1) and Multidisciplinary Chemistry (ranked #5).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信