路易斯酸碱相互作用制备无枝晶锂金属电池的原位凝胶化聚合物电解质

IF 8.7 1区 化学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Zhenjie Liu, Murong Xi, Rui Sheng, Wei Wang, Juan Ding, Zhouliang Tan and Yudai Huang*, 
{"title":"路易斯酸碱相互作用制备无枝晶锂金属电池的原位凝胶化聚合物电解质","authors":"Zhenjie Liu,&nbsp;Murong Xi,&nbsp;Rui Sheng,&nbsp;Wei Wang,&nbsp;Juan Ding,&nbsp;Zhouliang Tan and Yudai Huang*,&nbsp;","doi":"10.1021/acsmaterialslett.4c0233210.1021/acsmaterialslett.4c02332","DOIUrl":null,"url":null,"abstract":"<p >The dendrite and electrolyte leakage of lithium metal batteries (LMBs) is the root of their short lifespan and poor safety performance. Solid-state LMBs through <i>in situ</i> solidification represent an important solution strategy. Herein, we demonstrate a solidification approach for LMBs, which is achieved by Lewis acid–base interaction of polyamide and liquid electrolyte. Notably, the polyamide-based gel polymer electrolyte (GPE-PL) effectively mitigates the formation of Li dendrites, thereby preventing short circuits caused by dendrite growth even after cycling for 3500 h. Furthermore, the Li metal anode can remain stable for 1800 h even under commercial capacity of 5 mA cm<sup>–2</sup> and 5 mA h cm<sup>–2</sup>. As a proof of concept, the LFP/GPE-PL/Li pouch cell exhibits superior performance evidenced by a long lifespan of 400 cycles at 1C. The LMBs employing GPE-PL demonstrate superior electrochemical performance and reliable cycling performance. Our work offers promising ways to develop more efficient and safer solid-state LMBs.</p>","PeriodicalId":19,"journal":{"name":"ACS Materials Letters","volume":"7 2","pages":"560–565 560–565"},"PeriodicalIF":8.7000,"publicationDate":"2025-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"In Situ Gelation Polymer Electrolyte for Dendrite-Free Lithium Metal Batteries by Lewis Acid–Base Interaction\",\"authors\":\"Zhenjie Liu,&nbsp;Murong Xi,&nbsp;Rui Sheng,&nbsp;Wei Wang,&nbsp;Juan Ding,&nbsp;Zhouliang Tan and Yudai Huang*,&nbsp;\",\"doi\":\"10.1021/acsmaterialslett.4c0233210.1021/acsmaterialslett.4c02332\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The dendrite and electrolyte leakage of lithium metal batteries (LMBs) is the root of their short lifespan and poor safety performance. Solid-state LMBs through <i>in situ</i> solidification represent an important solution strategy. Herein, we demonstrate a solidification approach for LMBs, which is achieved by Lewis acid–base interaction of polyamide and liquid electrolyte. Notably, the polyamide-based gel polymer electrolyte (GPE-PL) effectively mitigates the formation of Li dendrites, thereby preventing short circuits caused by dendrite growth even after cycling for 3500 h. Furthermore, the Li metal anode can remain stable for 1800 h even under commercial capacity of 5 mA cm<sup>–2</sup> and 5 mA h cm<sup>–2</sup>. As a proof of concept, the LFP/GPE-PL/Li pouch cell exhibits superior performance evidenced by a long lifespan of 400 cycles at 1C. The LMBs employing GPE-PL demonstrate superior electrochemical performance and reliable cycling performance. Our work offers promising ways to develop more efficient and safer solid-state LMBs.</p>\",\"PeriodicalId\":19,\"journal\":{\"name\":\"ACS Materials Letters\",\"volume\":\"7 2\",\"pages\":\"560–565 560–565\"},\"PeriodicalIF\":8.7000,\"publicationDate\":\"2025-01-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Materials Letters\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsmaterialslett.4c02332\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Materials Letters","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsmaterialslett.4c02332","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

锂金属电池的枝晶和电解液泄漏是其寿命短、安全性能差的根源。通过原位凝固的固态lmb是一种重要的解决策略。在此,我们展示了一种通过聚酰胺和液体电解质的刘易斯酸碱相互作用实现lmb固化的方法。值得注意的是,聚酰胺基凝胶聚合物电解质(GPE-PL)有效地减缓了锂枝晶的形成,从而即使在循环3500小时后也能防止枝晶生长引起的短路。此外,即使在5 mA cm-2和5 mA h cm-2的商用容量下,锂金属阳极也能保持1800小时的稳定。作为概念验证,LFP/GPE-PL/Li袋状电池在1C下具有400次的长寿命,表现出卓越的性能。采用GPE-PL的lmb具有优异的电化学性能和可靠的循环性能。我们的工作为开发更高效、更安全的固态lmb提供了有希望的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

In Situ Gelation Polymer Electrolyte for Dendrite-Free Lithium Metal Batteries by Lewis Acid–Base Interaction

In Situ Gelation Polymer Electrolyte for Dendrite-Free Lithium Metal Batteries by Lewis Acid–Base Interaction

The dendrite and electrolyte leakage of lithium metal batteries (LMBs) is the root of their short lifespan and poor safety performance. Solid-state LMBs through in situ solidification represent an important solution strategy. Herein, we demonstrate a solidification approach for LMBs, which is achieved by Lewis acid–base interaction of polyamide and liquid electrolyte. Notably, the polyamide-based gel polymer electrolyte (GPE-PL) effectively mitigates the formation of Li dendrites, thereby preventing short circuits caused by dendrite growth even after cycling for 3500 h. Furthermore, the Li metal anode can remain stable for 1800 h even under commercial capacity of 5 mA cm–2 and 5 mA h cm–2. As a proof of concept, the LFP/GPE-PL/Li pouch cell exhibits superior performance evidenced by a long lifespan of 400 cycles at 1C. The LMBs employing GPE-PL demonstrate superior electrochemical performance and reliable cycling performance. Our work offers promising ways to develop more efficient and safer solid-state LMBs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Materials Letters
ACS Materials Letters MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
14.60
自引率
3.50%
发文量
261
期刊介绍: ACS Materials Letters is a journal that publishes high-quality and urgent papers at the forefront of fundamental and applied research in the field of materials science. It aims to bridge the gap between materials and other disciplines such as chemistry, engineering, and biology. The journal encourages multidisciplinary and innovative research that addresses global challenges. Papers submitted to ACS Materials Letters should clearly demonstrate the need for rapid disclosure of key results. The journal is interested in various areas including the design, synthesis, characterization, and evaluation of emerging materials, understanding the relationships between structure, property, and performance, as well as developing materials for applications in energy, environment, biomedical, electronics, and catalysis. The journal has a 2-year impact factor of 11.4 and is dedicated to publishing transformative materials research with fast processing times. The editors and staff of ACS Materials Letters actively participate in major scientific conferences and engage closely with readers and authors. The journal also maintains an active presence on social media to provide authors with greater visibility.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信