Shobana Kothandam, Selvatharani V, Naveensubramaniam Vijayakumar, Raveena Ann Alex, Jayanthi Abraham, Selvarasu Maheshwaran and Sasikumar Swamiappan*,
{"title":"锌掺杂Akermanite:具有增强生物活性,机械强度和细菌研究的有前途的骨科应用生物材料","authors":"Shobana Kothandam, Selvatharani V, Naveensubramaniam Vijayakumar, Raveena Ann Alex, Jayanthi Abraham, Selvarasu Maheshwaran and Sasikumar Swamiappan*, ","doi":"10.1021/acsomega.4c0548210.1021/acsomega.4c05482","DOIUrl":null,"url":null,"abstract":"<p >Incorporating zinc into biocompatible materials has been identified as a potential strategy for promoting bone regeneration and osteogenic activity during hard tissue regeneration. This work aimed to investigate the impact of zinc doping on the structure of akermanite, which was synthesized using the sol–gel combustion method, with the goal of improving the biological response. Powder XRD and FT-IR analysis confirmed the phase purity and the respective functional groups associated with Zn-doped akermanite. Further XPS analysis confirmed the presence of zinc with the respective binding energies in the akermanite matrix. According to the results obtained from the analysis, the apatite-forming ability of Zn-doped akermanite demonstrated enhanced apatite deposition on the surface of the pellet after 9 days of immersion in the SBF medium. The measured mechanical parameters, including compressive strength (140–189 MPa) and Young’s modulus (2505–3599 MPa), fall within the range of human cortical bone. Antimicrobial results showed an improved inhibition rate of the doped ceramics compared to pure akermanite with an inhibition percentage of 87% even at lower concentrations. The hemocompatibility of the materials showed hemolysis of human blood cells within the acceptable range without exhibiting toxicity. Cytotoxicity results demonstrate the biocompatibility of the materials with the MG-63 cell line. Based on the results, akermanite doped with zinc at optimal concentrations was found to be compatible and nontoxic promoting it as a potential alternative for bone regeneration in orthopedic applications.</p>","PeriodicalId":22,"journal":{"name":"ACS Omega","volume":"10 2","pages":"1911–1926 1911–1926"},"PeriodicalIF":4.3000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsomega.4c05482","citationCount":"0","resultStr":"{\"title\":\"Zinc Doped Akermanite: A Promising Biomaterial for Orthopedic Application with Enhanced Bioactivity, Mechanical Strength, and Bacterial Study\",\"authors\":\"Shobana Kothandam, Selvatharani V, Naveensubramaniam Vijayakumar, Raveena Ann Alex, Jayanthi Abraham, Selvarasu Maheshwaran and Sasikumar Swamiappan*, \",\"doi\":\"10.1021/acsomega.4c0548210.1021/acsomega.4c05482\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Incorporating zinc into biocompatible materials has been identified as a potential strategy for promoting bone regeneration and osteogenic activity during hard tissue regeneration. This work aimed to investigate the impact of zinc doping on the structure of akermanite, which was synthesized using the sol–gel combustion method, with the goal of improving the biological response. Powder XRD and FT-IR analysis confirmed the phase purity and the respective functional groups associated with Zn-doped akermanite. Further XPS analysis confirmed the presence of zinc with the respective binding energies in the akermanite matrix. According to the results obtained from the analysis, the apatite-forming ability of Zn-doped akermanite demonstrated enhanced apatite deposition on the surface of the pellet after 9 days of immersion in the SBF medium. The measured mechanical parameters, including compressive strength (140–189 MPa) and Young’s modulus (2505–3599 MPa), fall within the range of human cortical bone. Antimicrobial results showed an improved inhibition rate of the doped ceramics compared to pure akermanite with an inhibition percentage of 87% even at lower concentrations. The hemocompatibility of the materials showed hemolysis of human blood cells within the acceptable range without exhibiting toxicity. Cytotoxicity results demonstrate the biocompatibility of the materials with the MG-63 cell line. Based on the results, akermanite doped with zinc at optimal concentrations was found to be compatible and nontoxic promoting it as a potential alternative for bone regeneration in orthopedic applications.</p>\",\"PeriodicalId\":22,\"journal\":{\"name\":\"ACS Omega\",\"volume\":\"10 2\",\"pages\":\"1911–1926 1911–1926\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-01-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/epdf/10.1021/acsomega.4c05482\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Omega\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsomega.4c05482\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Omega","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsomega.4c05482","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Zinc Doped Akermanite: A Promising Biomaterial for Orthopedic Application with Enhanced Bioactivity, Mechanical Strength, and Bacterial Study
Incorporating zinc into biocompatible materials has been identified as a potential strategy for promoting bone regeneration and osteogenic activity during hard tissue regeneration. This work aimed to investigate the impact of zinc doping on the structure of akermanite, which was synthesized using the sol–gel combustion method, with the goal of improving the biological response. Powder XRD and FT-IR analysis confirmed the phase purity and the respective functional groups associated with Zn-doped akermanite. Further XPS analysis confirmed the presence of zinc with the respective binding energies in the akermanite matrix. According to the results obtained from the analysis, the apatite-forming ability of Zn-doped akermanite demonstrated enhanced apatite deposition on the surface of the pellet after 9 days of immersion in the SBF medium. The measured mechanical parameters, including compressive strength (140–189 MPa) and Young’s modulus (2505–3599 MPa), fall within the range of human cortical bone. Antimicrobial results showed an improved inhibition rate of the doped ceramics compared to pure akermanite with an inhibition percentage of 87% even at lower concentrations. The hemocompatibility of the materials showed hemolysis of human blood cells within the acceptable range without exhibiting toxicity. Cytotoxicity results demonstrate the biocompatibility of the materials with the MG-63 cell line. Based on the results, akermanite doped with zinc at optimal concentrations was found to be compatible and nontoxic promoting it as a potential alternative for bone regeneration in orthopedic applications.
ACS OmegaChemical Engineering-General Chemical Engineering
CiteScore
6.60
自引率
4.90%
发文量
3945
审稿时长
2.4 months
期刊介绍:
ACS Omega is an open-access global publication for scientific articles that describe new findings in chemistry and interfacing areas of science, without any perceived evaluation of immediate impact.