热稳定和低灵敏度单环二硝基甲基两性离子吡唑的分子内环化和高能基团修饰

IF 4.7 2区 化学 Q1 CHEMISTRY, INORGANIC & NUCLEAR
Changlin Zhou, Qingshan Xie, Junqi Wang, Liu Song, Huiying Deng, Zhipeng Chen, Lei Wang, Chen Yang* and Bingcheng Hu, 
{"title":"热稳定和低灵敏度单环二硝基甲基两性离子吡唑的分子内环化和高能基团修饰","authors":"Changlin Zhou,&nbsp;Qingshan Xie,&nbsp;Junqi Wang,&nbsp;Liu Song,&nbsp;Huiying Deng,&nbsp;Zhipeng Chen,&nbsp;Lei Wang,&nbsp;Chen Yang* and Bingcheng Hu,&nbsp;","doi":"10.1021/acs.inorgchem.4c0467110.1021/acs.inorgchem.4c04671","DOIUrl":null,"url":null,"abstract":"<p >Zwitterionic energetic materials offer a unique combination of high performance and stability, yet their synthesis and stability enhancement remain key challenges. In this study, we report the synthesis of a highly stable (dinitromethyl-functionalized zwitterionic compound, 1-(amino(iminio)methyl)-4,5-dihydro-1H-pyrazol-5-yl)dinitromethanide (<b>4</b>), with a thermal decomposition temperature of 215 °C, surpassing that of most previously reported energetic monocyclic zwitterions (<i>T</i><sub>d</sub> &lt; 150 °C). This compound was synthesized via intramolecular cyclization of a trinitromethyl-functionalized hydrazone precursor. Further chemical modifications, including nitration and fluorination, enabled zwitterion-to-zwitterion transformations, resulting in the formation of nitramines <b>10</b> and <b>12</b>. Additionally, the perchlorate salt (<b>8</b>) of <b>4</b> was synthesized, along with ammonium (<b>13</b>), guanidinium (<b>14</b>), and potassium (<b>15</b>) salts derived from <b>10</b>, all retaining zwitterionic properties. Physicochemical evaluations reveal that zwitterion <b>12</b> exhibits excellent thermal stability (<i>T</i><sub>d</sub> = 181 °C) and an optimal balance between high energy output (detonation velocity: 8329 m s<sup>–1</sup>, detonation pressure: 29.4 GPa) and reduced sensitivity (impact sensitivity: 35 J, friction sensitivity: 320 N). Notably, potassium salt <b>15</b> demonstrates superior thermal stability (<i>T</i><sub>d</sub> = 233 °C), exceeding that of RDX. These results expand the design framework for energetic zwitterions and contribute to the development of high-energy, low-sensitivity energetic materials.</p>","PeriodicalId":40,"journal":{"name":"Inorganic Chemistry","volume":"64 3","pages":"1455–1465 1455–1465"},"PeriodicalIF":4.7000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Intramolecular Cyclization and Energetic Group Modifications for Thermally Stable and Low-Sensitivity Monocyclic Dinitromethyl Zwitterionic Pyrazoles\",\"authors\":\"Changlin Zhou,&nbsp;Qingshan Xie,&nbsp;Junqi Wang,&nbsp;Liu Song,&nbsp;Huiying Deng,&nbsp;Zhipeng Chen,&nbsp;Lei Wang,&nbsp;Chen Yang* and Bingcheng Hu,&nbsp;\",\"doi\":\"10.1021/acs.inorgchem.4c0467110.1021/acs.inorgchem.4c04671\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Zwitterionic energetic materials offer a unique combination of high performance and stability, yet their synthesis and stability enhancement remain key challenges. In this study, we report the synthesis of a highly stable (dinitromethyl-functionalized zwitterionic compound, 1-(amino(iminio)methyl)-4,5-dihydro-1H-pyrazol-5-yl)dinitromethanide (<b>4</b>), with a thermal decomposition temperature of 215 °C, surpassing that of most previously reported energetic monocyclic zwitterions (<i>T</i><sub>d</sub> &lt; 150 °C). This compound was synthesized via intramolecular cyclization of a trinitromethyl-functionalized hydrazone precursor. Further chemical modifications, including nitration and fluorination, enabled zwitterion-to-zwitterion transformations, resulting in the formation of nitramines <b>10</b> and <b>12</b>. Additionally, the perchlorate salt (<b>8</b>) of <b>4</b> was synthesized, along with ammonium (<b>13</b>), guanidinium (<b>14</b>), and potassium (<b>15</b>) salts derived from <b>10</b>, all retaining zwitterionic properties. Physicochemical evaluations reveal that zwitterion <b>12</b> exhibits excellent thermal stability (<i>T</i><sub>d</sub> = 181 °C) and an optimal balance between high energy output (detonation velocity: 8329 m s<sup>–1</sup>, detonation pressure: 29.4 GPa) and reduced sensitivity (impact sensitivity: 35 J, friction sensitivity: 320 N). Notably, potassium salt <b>15</b> demonstrates superior thermal stability (<i>T</i><sub>d</sub> = 233 °C), exceeding that of RDX. These results expand the design framework for energetic zwitterions and contribute to the development of high-energy, low-sensitivity energetic materials.</p>\",\"PeriodicalId\":40,\"journal\":{\"name\":\"Inorganic Chemistry\",\"volume\":\"64 3\",\"pages\":\"1455–1465 1455–1465\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2025-01-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Inorganic Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.inorgchem.4c04671\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, INORGANIC & NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inorganic Chemistry","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.inorgchem.4c04671","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0

摘要

两性离子高能材料提供了一种独特的高性能和稳定性的组合,但它们的合成和稳定性的增强仍然是关键的挑战。在这项研究中,我们报道了一个高度稳定的(二硝基功能化)两性离子化合物,1-(氨基(亚胺)甲基)-4,5-二氢- 1h -吡唑-5-基)二硝基甲烷(4)的合成,其热分解温度为215℃,超过了之前报道的大多数高能单环两性离子(Td <;150°C)。该化合物是通过三硝基功能化腙前体的分子内环化合成的。进一步的化学修饰,包括硝化和氟化,使两性离子转化为两性离子,从而形成硝胺10和硝胺12。此外,合成了4的高氯酸盐(8),以及由10衍生的铵(13)、胍(14)和钾(15)盐,所有这些都保留了两性离子的性质。物理化学评价表明,两性离子12具有优异的热稳定性(Td = 181℃),在高能输出(爆速:8329 m s-1,爆压:29.4 GPa)和低灵敏度(冲击灵敏度:35 J,摩擦灵敏度:320 N)之间达到了最佳平衡。值得注意的是,钾盐15具有优异的热稳定性(Td = 233℃),超过了RDX。这些结果扩展了高能两性离子的设计框架,有助于开发高能、低灵敏度的高能材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Intramolecular Cyclization and Energetic Group Modifications for Thermally Stable and Low-Sensitivity Monocyclic Dinitromethyl Zwitterionic Pyrazoles

Intramolecular Cyclization and Energetic Group Modifications for Thermally Stable and Low-Sensitivity Monocyclic Dinitromethyl Zwitterionic Pyrazoles

Zwitterionic energetic materials offer a unique combination of high performance and stability, yet their synthesis and stability enhancement remain key challenges. In this study, we report the synthesis of a highly stable (dinitromethyl-functionalized zwitterionic compound, 1-(amino(iminio)methyl)-4,5-dihydro-1H-pyrazol-5-yl)dinitromethanide (4), with a thermal decomposition temperature of 215 °C, surpassing that of most previously reported energetic monocyclic zwitterions (Td < 150 °C). This compound was synthesized via intramolecular cyclization of a trinitromethyl-functionalized hydrazone precursor. Further chemical modifications, including nitration and fluorination, enabled zwitterion-to-zwitterion transformations, resulting in the formation of nitramines 10 and 12. Additionally, the perchlorate salt (8) of 4 was synthesized, along with ammonium (13), guanidinium (14), and potassium (15) salts derived from 10, all retaining zwitterionic properties. Physicochemical evaluations reveal that zwitterion 12 exhibits excellent thermal stability (Td = 181 °C) and an optimal balance between high energy output (detonation velocity: 8329 m s–1, detonation pressure: 29.4 GPa) and reduced sensitivity (impact sensitivity: 35 J, friction sensitivity: 320 N). Notably, potassium salt 15 demonstrates superior thermal stability (Td = 233 °C), exceeding that of RDX. These results expand the design framework for energetic zwitterions and contribute to the development of high-energy, low-sensitivity energetic materials.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Inorganic Chemistry
Inorganic Chemistry 化学-无机化学与核化学
CiteScore
7.60
自引率
13.00%
发文量
1960
审稿时长
1.9 months
期刊介绍: Inorganic Chemistry publishes fundamental studies in all phases of inorganic chemistry. Coverage includes experimental and theoretical reports on quantitative studies of structure and thermodynamics, kinetics, mechanisms of inorganic reactions, bioinorganic chemistry, and relevant aspects of organometallic chemistry, solid-state phenomena, and chemical bonding theory. Emphasis is placed on the synthesis, structure, thermodynamics, reactivity, spectroscopy, and bonding properties of significant new and known compounds.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信