二氧化硅包覆球形金纳米粒子的放大光声效应机理

IF 9.1 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Chen Xie, Peiyuan Kang, Jonghae Youn, Blake A. Wilson, Tingting Zhang, Lokesh Basavarajappa, Qingxiao Wang, Moon Kim, Lei Li, Kenneth Hoyt, Jaona Harifidy Randrianalisoa and Zhenpeng Qin*, 
{"title":"二氧化硅包覆球形金纳米粒子的放大光声效应机理","authors":"Chen Xie,&nbsp;Peiyuan Kang,&nbsp;Jonghae Youn,&nbsp;Blake A. Wilson,&nbsp;Tingting Zhang,&nbsp;Lokesh Basavarajappa,&nbsp;Qingxiao Wang,&nbsp;Moon Kim,&nbsp;Lei Li,&nbsp;Kenneth Hoyt,&nbsp;Jaona Harifidy Randrianalisoa and Zhenpeng Qin*,&nbsp;","doi":"10.1021/acs.nanolett.4c0555810.1021/acs.nanolett.4c05558","DOIUrl":null,"url":null,"abstract":"<p >Plasmonic nanomaterials are effective photoacoustic (PA) contrast agents with diverse biomedical applications. While silica coatings on gold nanoparticles (AuNPs) have been demonstrated to increase PA efficiency, the underlying mechanism remains elusive. Here, we systematically investigated the impact of silica coatings on PA generation under picosecond and nanosecond laser pulses. Experimentally, we demonstrated a record high PA amplification of up to 400% under noncavitation conditions with a thin silica coating and only under picosecond laser pulses. We provide a clear mechanism for the observed PA amplification that identifies two competing effects, including transient absorption, which reduces photon energy absorption, and electron–phonon energy transfer at the gold–silica interface, which partly reverses the transient absorption effect. This study provides the first evidence and mechanistic insight on the impact of nonlinear optical effects on the nanomaterial–property relationship in PA contrast agents and offers insights for designing highly efficient contrast agents for biomedical applications.</p>","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":"25 3","pages":"1133–1141 1133–1141"},"PeriodicalIF":9.1000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mechanism of Amplified Photoacoustic Effect for Silica-Coated Spherical Gold Nanoparticles\",\"authors\":\"Chen Xie,&nbsp;Peiyuan Kang,&nbsp;Jonghae Youn,&nbsp;Blake A. Wilson,&nbsp;Tingting Zhang,&nbsp;Lokesh Basavarajappa,&nbsp;Qingxiao Wang,&nbsp;Moon Kim,&nbsp;Lei Li,&nbsp;Kenneth Hoyt,&nbsp;Jaona Harifidy Randrianalisoa and Zhenpeng Qin*,&nbsp;\",\"doi\":\"10.1021/acs.nanolett.4c0555810.1021/acs.nanolett.4c05558\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Plasmonic nanomaterials are effective photoacoustic (PA) contrast agents with diverse biomedical applications. While silica coatings on gold nanoparticles (AuNPs) have been demonstrated to increase PA efficiency, the underlying mechanism remains elusive. Here, we systematically investigated the impact of silica coatings on PA generation under picosecond and nanosecond laser pulses. Experimentally, we demonstrated a record high PA amplification of up to 400% under noncavitation conditions with a thin silica coating and only under picosecond laser pulses. We provide a clear mechanism for the observed PA amplification that identifies two competing effects, including transient absorption, which reduces photon energy absorption, and electron–phonon energy transfer at the gold–silica interface, which partly reverses the transient absorption effect. This study provides the first evidence and mechanistic insight on the impact of nonlinear optical effects on the nanomaterial–property relationship in PA contrast agents and offers insights for designing highly efficient contrast agents for biomedical applications.</p>\",\"PeriodicalId\":53,\"journal\":{\"name\":\"Nano Letters\",\"volume\":\"25 3\",\"pages\":\"1133–1141 1133–1141\"},\"PeriodicalIF\":9.1000,\"publicationDate\":\"2025-01-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.nanolett.4c05558\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.nanolett.4c05558","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

等离子体纳米材料是一种有效的光声造影剂,具有多种生物医学应用。虽然金纳米颗粒(AuNPs)上的二氧化硅涂层已被证明可以提高PA效率,但其潜在的机制仍然难以捉摸。在这里,我们系统地研究了二氧化硅涂层对皮秒和纳秒激光脉冲下PA生成的影响。在实验中,我们证明了在无空化条件下,仅在皮秒激光脉冲下使用薄二氧化硅涂层,PA放大高达400%。我们为观察到的PA放大提供了一个明确的机制,确定了两种相互竞争的效应,包括瞬态吸收,它减少了光子能量的吸收,以及金-硅界面上的电子-声子能量转移,这在一定程度上逆转了瞬态吸收效应。本研究为非线性光学效应对PA造影剂中纳米材料-性能关系的影响提供了第一个证据和机制见解,并为设计用于生物医学应用的高效造影剂提供了见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Mechanism of Amplified Photoacoustic Effect for Silica-Coated Spherical Gold Nanoparticles

Mechanism of Amplified Photoacoustic Effect for Silica-Coated Spherical Gold Nanoparticles

Plasmonic nanomaterials are effective photoacoustic (PA) contrast agents with diverse biomedical applications. While silica coatings on gold nanoparticles (AuNPs) have been demonstrated to increase PA efficiency, the underlying mechanism remains elusive. Here, we systematically investigated the impact of silica coatings on PA generation under picosecond and nanosecond laser pulses. Experimentally, we demonstrated a record high PA amplification of up to 400% under noncavitation conditions with a thin silica coating and only under picosecond laser pulses. We provide a clear mechanism for the observed PA amplification that identifies two competing effects, including transient absorption, which reduces photon energy absorption, and electron–phonon energy transfer at the gold–silica interface, which partly reverses the transient absorption effect. This study provides the first evidence and mechanistic insight on the impact of nonlinear optical effects on the nanomaterial–property relationship in PA contrast agents and offers insights for designing highly efficient contrast agents for biomedical applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nano Letters
Nano Letters 工程技术-材料科学:综合
CiteScore
16.80
自引率
2.80%
发文量
1182
审稿时长
1.4 months
期刊介绍: Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including: - Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale - Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies - Modeling and simulation of synthetic, assembly, and interaction processes - Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance - Applications of nanoscale materials in living and environmental systems Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信