{"title":"thacalix[4]芳烃保护碗形高核3d-4f簇的温度诱导组装","authors":"Zixiu Lu, Chen Zhang, Qile Liang, Xuming Mei, Chunhui Duan* and Jiaxing Wang*, ","doi":"10.1021/acs.cgd.4c0123910.1021/acs.cgd.4c01239","DOIUrl":null,"url":null,"abstract":"<p >Thiacalix[4]arenes are a class of macrocyclic ligands employed to assemble high-nuclear-weight clusters, yet deciphering their structure and assembly process at the atomic level continues to pose a formidable challenge. Here, we report four bowl-shaped high-nuclearity 3d–4f clusters, {GdNi<sub>12</sub>[TC4A]<sub>3</sub>[CO<sub>3</sub>]<sub>3</sub>[HCOO]<sub>6</sub>[OCH<sub>3</sub>]<sub>3</sub>}·20H<sub>2</sub>O ({<b>GdNi</b><sub><b>12</b></sub><b>})</b>, {Gd<sub>2</sub>Ni<sub>28</sub>[TC4A]<sub>6</sub>[CO<sub>3</sub>]<sub>8</sub>[HCOO]<sub>10</sub>[OCH<sub>3</sub>]<sub>4</sub>[μ<sub>3</sub>–OH]<sub>6</sub>[μ<sub>2</sub>–OH]<sub>2</sub>}·17H<sub>2</sub>O ({<b>Gd</b><sub><b>2</b></sub><b>Ni</b><sub><b>28</b></sub><b>}</b>), {Gd<sub>4</sub>Ni<sub>24</sub>[TC4A]<sub>6</sub>[CO<sub>3</sub>]<sub>6</sub>[HCOO]<sub>16</sub>[OCH<sub>3</sub>]<sub>8</sub>[μ<sub>3</sub>–OH]<sub>6</sub>}·10H<sub>2</sub>O ({<b>Gd</b><sub><b>4</b></sub><b>Ni</b><sub><b>24</b></sub><b>}</b>), and {Gd<sub>5</sub>Ni<sub>26</sub>[TC4A]<sub>6</sub>[MA]<sub>2</sub>[CO<sub>3</sub>]<sub>6</sub>[HCOO]<sub>6</sub>[OCH<sub>3</sub>]<sub>4</sub>[μ<sub>3</sub>–OH]<sub>10</sub>}·5H<sub>2</sub>O ({<b>Gd</b><sub><b>5</b></sub><b>Ni</b><sub><b>26</b></sub><b>}</b>) (H<sub>2</sub>MA = malicacid), protected by the <i>p</i>-<i>tert</i>-butylthiacalix[4]arene (H<sub>4</sub>TC4A) ligand. The <b>{GdNi</b><sub><b>12</b></sub><b>}</b> cluster has a bowl-shaped architecture composed of the [NiO<sub>6</sub>], [GdO<sub>10</sub>], and [CO<sub>3</sub>] groups. Meanwhile, <b>{Gd</b><sub><b>2</b></sub><b>Ni</b><sub><b>28</b></sub><b>}</b>, <b>{Gd</b><sub><b>4</b></sub><b>Ni</b><sub><b>24</b></sub><b>}</b>, and <b>{Gd</b><sub><b>5</b></sub><b>Ni</b><sub><b>26</b></sub><b>}</b> present a mouth-to-mouth skew-symmetric bowl-shaped structure, each composed of <b>{GdNi</b><sub><b>12</b></sub><b>}</b> cluster units. Magnetic studies revealed ferromagnetic interactions within <b>{GdNi</b><sub><b>12</b></sub><b>}</b> and <b>{Gd</b><sub><b>2</b></sub><b>Ni</b><sub><b>28</b></sub><b>}</b> clusters. This work not only reveals the effect of macrocyclic ligands on the formation of high-nuclearity 3d–4f clusters but also provides a new structural prototype to understand their assembly rules.</p>","PeriodicalId":34,"journal":{"name":"Crystal Growth & Design","volume":"25 2","pages":"264–271 264–271"},"PeriodicalIF":3.4000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Temperature-Induced Assembly of Thiacalix[4]arene-Protected Bowl-Shaped High-Nuclearity 3d–4f Clusters\",\"authors\":\"Zixiu Lu, Chen Zhang, Qile Liang, Xuming Mei, Chunhui Duan* and Jiaxing Wang*, \",\"doi\":\"10.1021/acs.cgd.4c0123910.1021/acs.cgd.4c01239\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Thiacalix[4]arenes are a class of macrocyclic ligands employed to assemble high-nuclear-weight clusters, yet deciphering their structure and assembly process at the atomic level continues to pose a formidable challenge. Here, we report four bowl-shaped high-nuclearity 3d–4f clusters, {GdNi<sub>12</sub>[TC4A]<sub>3</sub>[CO<sub>3</sub>]<sub>3</sub>[HCOO]<sub>6</sub>[OCH<sub>3</sub>]<sub>3</sub>}·20H<sub>2</sub>O ({<b>GdNi</b><sub><b>12</b></sub><b>})</b>, {Gd<sub>2</sub>Ni<sub>28</sub>[TC4A]<sub>6</sub>[CO<sub>3</sub>]<sub>8</sub>[HCOO]<sub>10</sub>[OCH<sub>3</sub>]<sub>4</sub>[μ<sub>3</sub>–OH]<sub>6</sub>[μ<sub>2</sub>–OH]<sub>2</sub>}·17H<sub>2</sub>O ({<b>Gd</b><sub><b>2</b></sub><b>Ni</b><sub><b>28</b></sub><b>}</b>), {Gd<sub>4</sub>Ni<sub>24</sub>[TC4A]<sub>6</sub>[CO<sub>3</sub>]<sub>6</sub>[HCOO]<sub>16</sub>[OCH<sub>3</sub>]<sub>8</sub>[μ<sub>3</sub>–OH]<sub>6</sub>}·10H<sub>2</sub>O ({<b>Gd</b><sub><b>4</b></sub><b>Ni</b><sub><b>24</b></sub><b>}</b>), and {Gd<sub>5</sub>Ni<sub>26</sub>[TC4A]<sub>6</sub>[MA]<sub>2</sub>[CO<sub>3</sub>]<sub>6</sub>[HCOO]<sub>6</sub>[OCH<sub>3</sub>]<sub>4</sub>[μ<sub>3</sub>–OH]<sub>10</sub>}·5H<sub>2</sub>O ({<b>Gd</b><sub><b>5</b></sub><b>Ni</b><sub><b>26</b></sub><b>}</b>) (H<sub>2</sub>MA = malicacid), protected by the <i>p</i>-<i>tert</i>-butylthiacalix[4]arene (H<sub>4</sub>TC4A) ligand. The <b>{GdNi</b><sub><b>12</b></sub><b>}</b> cluster has a bowl-shaped architecture composed of the [NiO<sub>6</sub>], [GdO<sub>10</sub>], and [CO<sub>3</sub>] groups. Meanwhile, <b>{Gd</b><sub><b>2</b></sub><b>Ni</b><sub><b>28</b></sub><b>}</b>, <b>{Gd</b><sub><b>4</b></sub><b>Ni</b><sub><b>24</b></sub><b>}</b>, and <b>{Gd</b><sub><b>5</b></sub><b>Ni</b><sub><b>26</b></sub><b>}</b> present a mouth-to-mouth skew-symmetric bowl-shaped structure, each composed of <b>{GdNi</b><sub><b>12</b></sub><b>}</b> cluster units. Magnetic studies revealed ferromagnetic interactions within <b>{GdNi</b><sub><b>12</b></sub><b>}</b> and <b>{Gd</b><sub><b>2</b></sub><b>Ni</b><sub><b>28</b></sub><b>}</b> clusters. This work not only reveals the effect of macrocyclic ligands on the formation of high-nuclearity 3d–4f clusters but also provides a new structural prototype to understand their assembly rules.</p>\",\"PeriodicalId\":34,\"journal\":{\"name\":\"Crystal Growth & Design\",\"volume\":\"25 2\",\"pages\":\"264–271 264–271\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Crystal Growth & Design\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.cgd.4c01239\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Crystal Growth & Design","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.cgd.4c01239","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Temperature-Induced Assembly of Thiacalix[4]arene-Protected Bowl-Shaped High-Nuclearity 3d–4f Clusters
Thiacalix[4]arenes are a class of macrocyclic ligands employed to assemble high-nuclear-weight clusters, yet deciphering their structure and assembly process at the atomic level continues to pose a formidable challenge. Here, we report four bowl-shaped high-nuclearity 3d–4f clusters, {GdNi12[TC4A]3[CO3]3[HCOO]6[OCH3]3}·20H2O ({GdNi12}), {Gd2Ni28[TC4A]6[CO3]8[HCOO]10[OCH3]4[μ3–OH]6[μ2–OH]2}·17H2O ({Gd2Ni28}), {Gd4Ni24[TC4A]6[CO3]6[HCOO]16[OCH3]8[μ3–OH]6}·10H2O ({Gd4Ni24}), and {Gd5Ni26[TC4A]6[MA]2[CO3]6[HCOO]6[OCH3]4[μ3–OH]10}·5H2O ({Gd5Ni26}) (H2MA = malicacid), protected by the p-tert-butylthiacalix[4]arene (H4TC4A) ligand. The {GdNi12} cluster has a bowl-shaped architecture composed of the [NiO6], [GdO10], and [CO3] groups. Meanwhile, {Gd2Ni28}, {Gd4Ni24}, and {Gd5Ni26} present a mouth-to-mouth skew-symmetric bowl-shaped structure, each composed of {GdNi12} cluster units. Magnetic studies revealed ferromagnetic interactions within {GdNi12} and {Gd2Ni28} clusters. This work not only reveals the effect of macrocyclic ligands on the formation of high-nuclearity 3d–4f clusters but also provides a new structural prototype to understand their assembly rules.
期刊介绍:
The aim of Crystal Growth & Design is to stimulate crossfertilization of knowledge among scientists and engineers working in the fields of crystal growth, crystal engineering, and the industrial application of crystalline materials.
Crystal Growth & Design publishes theoretical and experimental studies of the physical, chemical, and biological phenomena and processes related to the design, growth, and application of crystalline materials. Synergistic approaches originating from different disciplines and technologies and integrating the fields of crystal growth, crystal engineering, intermolecular interactions, and industrial application are encouraged.