BiFeO3-Bi2Fe4O9体系结晶途径的控制

IF 7 2区 材料科学 Q2 CHEMISTRY, PHYSICAL
Andrea Kirsch*, Guilherme B. Strapasson, Niels Lefeld, Mathias Gogolin, Mark C. Videbæk, Soham Banerjee, Heloisa N. Bordallo and Kirsten M. Ø. Jensen*, 
{"title":"BiFeO3-Bi2Fe4O9体系结晶途径的控制","authors":"Andrea Kirsch*,&nbsp;Guilherme B. Strapasson,&nbsp;Niels Lefeld,&nbsp;Mathias Gogolin,&nbsp;Mark C. Videbæk,&nbsp;Soham Banerjee,&nbsp;Heloisa N. Bordallo and Kirsten M. Ø. Jensen*,&nbsp;","doi":"10.1021/acs.chemmater.4c0265610.1021/acs.chemmater.4c02656","DOIUrl":null,"url":null,"abstract":"<p >Bismuth ferrites, specifically perovskite-type BiFeO<sub>3</sub> and mullite-type Bi<sub>2</sub>Fe<sub>4</sub>O<sub>9</sub>, hold significant technological promise as catalysts, photovoltaics, and room-temperature multiferroics. However, challenges arise due to their frequent cocrystallization, particularly in the nanoregime, hindering the production of phase-pure materials. This study unveils a controlled sol–gel crystallization approach, elucidating the phase formation complexities in the bismuth ferrite oxide system by coupling thermochemical analysis and total scattering with pair distribution function analysis. We tune the crystallization pathways in the BiFeO<sub>3</sub>–Bi<sub>2</sub>Fe<sub>4</sub>O<sub>9</sub> system by adjusting the metal to complexing agent ratio and pH during precursor preparation with a fixed Bi/Fe ratio of 1:2. Although all precursors undergo an amorphization process during heating, our results demonstrate a consistent correlation between the crystallization pathway and the initial structural entities formed during gel formation. Pair distribution function analysis reveals structural differences in the intermediate amorphous structures, which preferentially crystallize into either BiFeO<sub>3</sub> or Bi<sub>2</sub>Fe<sub>4</sub>O<sub>9</sub>. This study offers mechanistic insights into the formation processes in the system and synthetic guidance for the controlled synthesis of pure Bi<sub>2</sub>Fe<sub>4</sub>O<sub>9</sub> and mixed BiFeO<sub>3</sub>/Bi<sub>2</sub>Fe<sub>4</sub>O<sub>9</sub> nanomaterials. Additionally, it elucidates the unusual growth behavior and structural size dependence of Bi<sub>2</sub>Fe<sub>4</sub>O<sub>9</sub>, particularly highlighting significant distortions in the local structure likely induced by the proximity of Bi’s stereoactive lone electron pairs at small sizes.</p>","PeriodicalId":33,"journal":{"name":"Chemistry of Materials","volume":"37 1","pages":"338–348 338–348"},"PeriodicalIF":7.0000,"publicationDate":"2024-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acs.chemmater.4c02656","citationCount":"0","resultStr":"{\"title\":\"Control of Crystallization Pathways in the BiFeO3–Bi2Fe4O9 System\",\"authors\":\"Andrea Kirsch*,&nbsp;Guilherme B. Strapasson,&nbsp;Niels Lefeld,&nbsp;Mathias Gogolin,&nbsp;Mark C. Videbæk,&nbsp;Soham Banerjee,&nbsp;Heloisa N. Bordallo and Kirsten M. Ø. Jensen*,&nbsp;\",\"doi\":\"10.1021/acs.chemmater.4c0265610.1021/acs.chemmater.4c02656\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Bismuth ferrites, specifically perovskite-type BiFeO<sub>3</sub> and mullite-type Bi<sub>2</sub>Fe<sub>4</sub>O<sub>9</sub>, hold significant technological promise as catalysts, photovoltaics, and room-temperature multiferroics. However, challenges arise due to their frequent cocrystallization, particularly in the nanoregime, hindering the production of phase-pure materials. This study unveils a controlled sol–gel crystallization approach, elucidating the phase formation complexities in the bismuth ferrite oxide system by coupling thermochemical analysis and total scattering with pair distribution function analysis. We tune the crystallization pathways in the BiFeO<sub>3</sub>–Bi<sub>2</sub>Fe<sub>4</sub>O<sub>9</sub> system by adjusting the metal to complexing agent ratio and pH during precursor preparation with a fixed Bi/Fe ratio of 1:2. Although all precursors undergo an amorphization process during heating, our results demonstrate a consistent correlation between the crystallization pathway and the initial structural entities formed during gel formation. Pair distribution function analysis reveals structural differences in the intermediate amorphous structures, which preferentially crystallize into either BiFeO<sub>3</sub> or Bi<sub>2</sub>Fe<sub>4</sub>O<sub>9</sub>. This study offers mechanistic insights into the formation processes in the system and synthetic guidance for the controlled synthesis of pure Bi<sub>2</sub>Fe<sub>4</sub>O<sub>9</sub> and mixed BiFeO<sub>3</sub>/Bi<sub>2</sub>Fe<sub>4</sub>O<sub>9</sub> nanomaterials. Additionally, it elucidates the unusual growth behavior and structural size dependence of Bi<sub>2</sub>Fe<sub>4</sub>O<sub>9</sub>, particularly highlighting significant distortions in the local structure likely induced by the proximity of Bi’s stereoactive lone electron pairs at small sizes.</p>\",\"PeriodicalId\":33,\"journal\":{\"name\":\"Chemistry of Materials\",\"volume\":\"37 1\",\"pages\":\"338–348 338–348\"},\"PeriodicalIF\":7.0000,\"publicationDate\":\"2024-12-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/epdf/10.1021/acs.chemmater.4c02656\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemistry of Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.chemmater.4c02656\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry of Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.chemmater.4c02656","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

铋铁氧体,特别是钙钛矿型BiFeO3和莫来石型Bi2Fe4O9,在催化剂、光伏和室温多铁材料方面具有重要的技术前景。然而,由于它们频繁的共结晶,特别是在纳米结构中,阻碍了相纯材料的生产,从而带来了挑战。本研究揭示了一种受控的溶胶-凝胶结晶方法,通过耦合热化学分析、总散射和对分布函数分析来阐明氧化铋铁氧体体系中相形成的复杂性。在BiFeO3-Bi2Fe4O9前驱体制备过程中,我们通过调整金属与络合剂的比例和pH值来调整BiFeO3-Bi2Fe4O9体系的结晶路径。虽然所有前驱体在加热过程中都经历非晶化过程,但我们的研究结果表明,结晶途径与凝胶形成过程中形成的初始结构实体之间存在一致的相关性。对分布函数分析揭示了中间非晶结构的结构差异,它们优先结晶为BiFeO3或Bi2Fe4O9。该研究为系统中形成过程的机理提供了深入的认识,并为控制合成纯Bi2Fe4O9和混合Bi2Fe4O9纳米材料提供了合成指导。此外,它阐明了Bi2Fe4O9不同寻常的生长行为和结构尺寸依赖性,特别强调了可能由Bi的立体活性孤电子对在小尺寸上的接近引起的局部结构的显著扭曲。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Control of Crystallization Pathways in the BiFeO3–Bi2Fe4O9 System

Bismuth ferrites, specifically perovskite-type BiFeO3 and mullite-type Bi2Fe4O9, hold significant technological promise as catalysts, photovoltaics, and room-temperature multiferroics. However, challenges arise due to their frequent cocrystallization, particularly in the nanoregime, hindering the production of phase-pure materials. This study unveils a controlled sol–gel crystallization approach, elucidating the phase formation complexities in the bismuth ferrite oxide system by coupling thermochemical analysis and total scattering with pair distribution function analysis. We tune the crystallization pathways in the BiFeO3–Bi2Fe4O9 system by adjusting the metal to complexing agent ratio and pH during precursor preparation with a fixed Bi/Fe ratio of 1:2. Although all precursors undergo an amorphization process during heating, our results demonstrate a consistent correlation between the crystallization pathway and the initial structural entities formed during gel formation. Pair distribution function analysis reveals structural differences in the intermediate amorphous structures, which preferentially crystallize into either BiFeO3 or Bi2Fe4O9. This study offers mechanistic insights into the formation processes in the system and synthetic guidance for the controlled synthesis of pure Bi2Fe4O9 and mixed BiFeO3/Bi2Fe4O9 nanomaterials. Additionally, it elucidates the unusual growth behavior and structural size dependence of Bi2Fe4O9, particularly highlighting significant distortions in the local structure likely induced by the proximity of Bi’s stereoactive lone electron pairs at small sizes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chemistry of Materials
Chemistry of Materials 工程技术-材料科学:综合
CiteScore
14.10
自引率
5.80%
发文量
929
审稿时长
1.5 months
期刊介绍: The journal Chemistry of Materials focuses on publishing original research at the intersection of materials science and chemistry. The studies published in the journal involve chemistry as a prominent component and explore topics such as the design, synthesis, characterization, processing, understanding, and application of functional or potentially functional materials. The journal covers various areas of interest, including inorganic and organic solid-state chemistry, nanomaterials, biomaterials, thin films and polymers, and composite/hybrid materials. The journal particularly seeks papers that highlight the creation or development of innovative materials with novel optical, electrical, magnetic, catalytic, or mechanical properties. It is essential that manuscripts on these topics have a primary focus on the chemistry of materials and represent a significant advancement compared to prior research. Before external reviews are sought, submitted manuscripts undergo a review process by a minimum of two editors to ensure their appropriateness for the journal and the presence of sufficient evidence of a significant advance that will be of broad interest to the materials chemistry community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信