IF 3.7 Q2 CHEMISTRY, PHYSICAL
José A. S. Laranjeira, Nicolas Martins, Pablo A. Denis and Julio Sambrano*, 
{"title":"High Stability, Piezoelectric Response, and Promising Photocatalytic Activity on the New Pentagonal CGeP4 Monolayer","authors":"José A. S. Laranjeira,&nbsp;Nicolas Martins,&nbsp;Pablo A. Denis and Julio Sambrano*,&nbsp;","doi":"10.1021/acsphyschemau.4c0006810.1021/acsphyschemau.4c00068","DOIUrl":null,"url":null,"abstract":"<p >This study introduces the penta-structured semiconductor p-CGeP<sub>4</sub> through density functional theory simulations, which possesses an indirect band gap transition of 3.20 eV. Mechanical analysis confirms the mechanical stability of p-CGeP<sub>4</sub>, satisfying Born–Huang criteria. Notably, p-CGeP<sub>4</sub> has significant direct (<i>e</i><sub>31</sub> = −11.27 and <i>e</i><sub>36</sub> = −5.34 × 10<sup>–10</sup> C/m) and converse (<i>d</i><sub>31</sub> = −18.52 and <i>d</i><sub>36</sub> = −13.18 pm/V) piezoelectric coefficients, surpassing other pentagon-based structures. Under tensile strain, the band gap energy increases to 3.31 eV at 4% strain, then decreases smoothly to 1.97 eV at maximum stretching, representing an ∼38% variation. Under compressive strain, the band gap decreases almost linearly to 2.65 eV at −8% strain and then drops sharply to 0.97 eV, an ∼69% variation. Strongly basic conditions result in a promising band alignment for the new p-CGeP<sub>4</sub> monolayer. This suggests potential photocatalytic behavior across all tensile strain regimes and significant compression levels (ε = 0% to −8%). This study highlights the potential of p-CGeP<sub>4</sub> for groundbreaking applications in nanoelectronic devices and materials engineering.</p>","PeriodicalId":29796,"journal":{"name":"ACS Physical Chemistry Au","volume":"5 1","pages":"62–71 62–71"},"PeriodicalIF":3.7000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsphyschemau.4c00068","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Physical Chemistry Au","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsphyschemau.4c00068","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

本研究通过密度泛函理论模拟介绍了具有3.20 eV间接带隙跃迁的五结构半导体p-CGeP4。力学分析证实了p-CGeP4的力学稳定性,满足Born-Huang准则。值得注意的是,p-CGeP4具有显著的正压电系数(e31 = - 11.27和e36 = - 5.34 × 10-10 C/m)和反向压电系数(d31 = - 18.52和d36 = - 13.18 pm/V),优于其他五边形结构。在拉伸应变下,带隙能量在4%应变时增加到3.31 eV,然后在最大拉伸时平稳下降到1.97 eV,变化幅度为38%。在压缩应变下,带隙几乎呈线性减小至- 8%应变时的2.65 eV,然后急剧下降至0.97 eV,变化幅度为69%。强碱性条件导致新的p-CGeP4单层具有良好的能带对准。这表明潜在的光催化行为在所有拉伸应变和显著压缩水平(ε = 0%至- 8%)。这项研究强调了p-CGeP4在纳米电子器件和材料工程中的突破性应用潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
High Stability, Piezoelectric Response, and Promising Photocatalytic Activity on the New Pentagonal CGeP4 Monolayer

This study introduces the penta-structured semiconductor p-CGeP4 through density functional theory simulations, which possesses an indirect band gap transition of 3.20 eV. Mechanical analysis confirms the mechanical stability of p-CGeP4, satisfying Born–Huang criteria. Notably, p-CGeP4 has significant direct (e31 = −11.27 and e36 = −5.34 × 10–10 C/m) and converse (d31 = −18.52 and d36 = −13.18 pm/V) piezoelectric coefficients, surpassing other pentagon-based structures. Under tensile strain, the band gap energy increases to 3.31 eV at 4% strain, then decreases smoothly to 1.97 eV at maximum stretching, representing an ∼38% variation. Under compressive strain, the band gap decreases almost linearly to 2.65 eV at −8% strain and then drops sharply to 0.97 eV, an ∼69% variation. Strongly basic conditions result in a promising band alignment for the new p-CGeP4 monolayer. This suggests potential photocatalytic behavior across all tensile strain regimes and significant compression levels (ε = 0% to −8%). This study highlights the potential of p-CGeP4 for groundbreaking applications in nanoelectronic devices and materials engineering.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.70
自引率
0.00%
发文量
0
期刊介绍: ACS Physical Chemistry Au is an open access journal which publishes original fundamental and applied research on all aspects of physical chemistry. The journal publishes new and original experimental computational and theoretical research of interest to physical chemists biophysical chemists chemical physicists physicists material scientists and engineers. An essential criterion for acceptance is that the manuscript provides new physical insight or develops new tools and methods of general interest. Some major topical areas include:Molecules Clusters and Aerosols; Biophysics Biomaterials Liquids and Soft Matter; Energy Materials and Catalysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信