磁性氧化铁种子介导的二维ZnO核壳纳米结构的形成

IF 5.5 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Zhengxi Xuan, Yaoli Zhao, Shuo Liu, Avisek Dutta, Zheng Fu, Paras N. Prasad*, Thomas Thundat* and Mark T. Swihart*, 
{"title":"磁性氧化铁种子介导的二维ZnO核壳纳米结构的形成","authors":"Zhengxi Xuan,&nbsp;Yaoli Zhao,&nbsp;Shuo Liu,&nbsp;Avisek Dutta,&nbsp;Zheng Fu,&nbsp;Paras N. Prasad*,&nbsp;Thomas Thundat* and Mark T. Swihart*,&nbsp;","doi":"10.1021/acsanm.4c0574110.1021/acsanm.4c05741","DOIUrl":null,"url":null,"abstract":"<p >Metal oxide core–shell nanocomposites can derive bifunctionality from combining two or more intimately coupled domains of different dimensional nanomaterials. These properties can be tuned by adjusting the composition and reaction conditions to modulate the structure–function relationship. However, the colloidal synthesis of metal oxide 0D nanomaterials incorporated into 2D core–shell platelet nanostructures and their related applications remain underexplored. Effects of coupling 0D nanoparticles and 2D plate-like structures may manifest via magneto-plasmonic interactions. Here, we present a single-step method to synthesize platelet-like ZnO nanostructures with a tunable layer structure and a magnetic core. The uniqueness of this strategy lies in the use of a magnetic iron oxide core, which seeds the lateral growth of hexagonal zinc oxide (ZnO) platelets, forming a 0D/2D core–shell heterostructure (henceforth denoted as Fe<sub><i>x</i></sub>O<sub><i>y</i></sub>@ZnO). Upon combining magnetic iron oxide with semiconducting ZnO, the coercivity of Fe<sub><i>x</i></sub>O<sub><i>y</i></sub>@ZnO significantly increased compared to that of pure iron oxide. We also employed magnetic force microscopy (MFM) to measure the magnetization distribution within the Fe<sub><i>x</i></sub>O<sub><i>y</i></sub>@ZnO domain. Magnetic circular dichroism (MCD) spectroscopy was employed to characterize the magneto-optic (MO) response of the material, showing significant differences between iron oxide alone vs core–shell nanoplatelets of different morphologies. The systematic approach to synthesizing core–shell nanoplatelets of tunable size and morphology holds great promise in practical applications, especially in applications in which both optoelectronic and magnetic properties are of interest.</p>","PeriodicalId":6,"journal":{"name":"ACS Applied Nano Materials","volume":"8 1","pages":"351–360 351–360"},"PeriodicalIF":5.5000,"publicationDate":"2024-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Magnetic Iron Oxide Seed-mediated Formation of 2D ZnO Core–shell Nanostructures\",\"authors\":\"Zhengxi Xuan,&nbsp;Yaoli Zhao,&nbsp;Shuo Liu,&nbsp;Avisek Dutta,&nbsp;Zheng Fu,&nbsp;Paras N. Prasad*,&nbsp;Thomas Thundat* and Mark T. Swihart*,&nbsp;\",\"doi\":\"10.1021/acsanm.4c0574110.1021/acsanm.4c05741\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Metal oxide core–shell nanocomposites can derive bifunctionality from combining two or more intimately coupled domains of different dimensional nanomaterials. These properties can be tuned by adjusting the composition and reaction conditions to modulate the structure–function relationship. However, the colloidal synthesis of metal oxide 0D nanomaterials incorporated into 2D core–shell platelet nanostructures and their related applications remain underexplored. Effects of coupling 0D nanoparticles and 2D plate-like structures may manifest via magneto-plasmonic interactions. Here, we present a single-step method to synthesize platelet-like ZnO nanostructures with a tunable layer structure and a magnetic core. The uniqueness of this strategy lies in the use of a magnetic iron oxide core, which seeds the lateral growth of hexagonal zinc oxide (ZnO) platelets, forming a 0D/2D core–shell heterostructure (henceforth denoted as Fe<sub><i>x</i></sub>O<sub><i>y</i></sub>@ZnO). Upon combining magnetic iron oxide with semiconducting ZnO, the coercivity of Fe<sub><i>x</i></sub>O<sub><i>y</i></sub>@ZnO significantly increased compared to that of pure iron oxide. We also employed magnetic force microscopy (MFM) to measure the magnetization distribution within the Fe<sub><i>x</i></sub>O<sub><i>y</i></sub>@ZnO domain. Magnetic circular dichroism (MCD) spectroscopy was employed to characterize the magneto-optic (MO) response of the material, showing significant differences between iron oxide alone vs core–shell nanoplatelets of different morphologies. The systematic approach to synthesizing core–shell nanoplatelets of tunable size and morphology holds great promise in practical applications, especially in applications in which both optoelectronic and magnetic properties are of interest.</p>\",\"PeriodicalId\":6,\"journal\":{\"name\":\"ACS Applied Nano Materials\",\"volume\":\"8 1\",\"pages\":\"351–360 351–360\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2024-12-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Nano Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsanm.4c05741\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Nano Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsanm.4c05741","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

金属氧化物核壳纳米复合材料可以通过结合两个或多个不同尺寸纳米材料的紧密耦合域来获得双功能。这些性质可以通过调整组成和反应条件来调节结构-功能关系来调节。然而,金属氧化物纳米材料的胶体合成与二维核壳片状纳米结构及其相关应用仍未得到充分的研究。三维纳米粒子与二维板状结构的耦合效应可能通过磁等离子体相互作用表现出来。在这里,我们提出了一种单步合成具有可调层结构和磁芯的片状ZnO纳米结构的方法。该策略的独特之处在于使用磁性氧化铁核心,该核心为六方氧化锌(ZnO)血小板的横向生长提供种子,形成0D/2D核壳异质结构(以下简称FexOy@ZnO)。磁性氧化铁与半导体氧化锌结合后,FexOy@ZnO的矫顽力比纯氧化铁的矫顽力显著提高。我们还使用磁力显微镜(MFM)来测量FexOy@ZnO域内的磁化分布。利用磁圆二色性(MCD)光谱对材料的磁光响应进行了表征,结果表明,不同形态的氧化铁纳米片与核壳纳米片之间存在显著差异。系统地合成大小和形态可调的核壳纳米片在实际应用中具有很大的前景,特别是在光电和磁性都感兴趣的应用中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Magnetic Iron Oxide Seed-mediated Formation of 2D ZnO Core–shell Nanostructures

Magnetic Iron Oxide Seed-mediated Formation of 2D ZnO Core–shell Nanostructures

Metal oxide core–shell nanocomposites can derive bifunctionality from combining two or more intimately coupled domains of different dimensional nanomaterials. These properties can be tuned by adjusting the composition and reaction conditions to modulate the structure–function relationship. However, the colloidal synthesis of metal oxide 0D nanomaterials incorporated into 2D core–shell platelet nanostructures and their related applications remain underexplored. Effects of coupling 0D nanoparticles and 2D plate-like structures may manifest via magneto-plasmonic interactions. Here, we present a single-step method to synthesize platelet-like ZnO nanostructures with a tunable layer structure and a magnetic core. The uniqueness of this strategy lies in the use of a magnetic iron oxide core, which seeds the lateral growth of hexagonal zinc oxide (ZnO) platelets, forming a 0D/2D core–shell heterostructure (henceforth denoted as FexOy@ZnO). Upon combining magnetic iron oxide with semiconducting ZnO, the coercivity of FexOy@ZnO significantly increased compared to that of pure iron oxide. We also employed magnetic force microscopy (MFM) to measure the magnetization distribution within the FexOy@ZnO domain. Magnetic circular dichroism (MCD) spectroscopy was employed to characterize the magneto-optic (MO) response of the material, showing significant differences between iron oxide alone vs core–shell nanoplatelets of different morphologies. The systematic approach to synthesizing core–shell nanoplatelets of tunable size and morphology holds great promise in practical applications, especially in applications in which both optoelectronic and magnetic properties are of interest.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.30
自引率
3.40%
发文量
1601
期刊介绍: ACS Applied Nano Materials is an interdisciplinary journal publishing original research covering all aspects of engineering, chemistry, physics and biology relevant to applications of nanomaterials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important applications of nanomaterials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信