一种用于混合超级电容器的具有增强储能性能的一锅三元铁锰锌氧化物正极的设计

IF 5.3 3区 工程技术 Q2 ENERGY & FUELS
Suganya Subramaniyan, Muthulakshmi Veerasingam, Kousi Feroz Gandhi, Venkatesan Arumugam, Krishna Kumar Muthusamy and Sudhahar Sakkarapani*, 
{"title":"一种用于混合超级电容器的具有增强储能性能的一锅三元铁锰锌氧化物正极的设计","authors":"Suganya Subramaniyan,&nbsp;Muthulakshmi Veerasingam,&nbsp;Kousi Feroz Gandhi,&nbsp;Venkatesan Arumugam,&nbsp;Krishna Kumar Muthusamy and Sudhahar Sakkarapani*,&nbsp;","doi":"10.1021/acs.energyfuels.4c0475910.1021/acs.energyfuels.4c04759","DOIUrl":null,"url":null,"abstract":"<p >In recent years, ternary metal-oxide nanocomposite-based active electrodes have been investigated more effectively for supercapacitor applications due to the existence of a greater number of electroactive sites and the synergistic effect of three different transition-metal ions. Herein, Fe–Mn–Zn oxide ternary nanocomposites are synthesized using a simple and cost-effective one-pot hydrothermal approach. The characterizations of XRD, FTIR, FESEM, EDX, HRTEM, and XPS are analyzed for the synthesized Fe–Mn–Zn oxide nanocomposites to study their phases, functional groups, morphologies, purity, and binding energies. The electrochemical characteristics for the developed electrodes are studied in a three-electrode technique using CV, GCD, EIS, and a cyclic stability test. As expected, the ternary nanocomposite electrode of Fe–Mn–Zn oxide reveals a maximum specific capacitance (<i>C</i><sub>spc1</sub>) of 1673.4 F/g in comparison to other developed electrodes of ZnFe<sub>2</sub>O<sub>4</sub> (271.7 F/g) and ZnMn<sub>2</sub>O<sub>4</sub> (412.7 F/g) at the appropriate scan rate of 10 mV/s. In addition, the Fe–Mn–Zn oxide ternary nanocomposite active electrode exhibits 2616.25 F/g of total capacitance (<i>q</i><sub>T</sub><sup>**</sup>), 686.94 F/g of outer capacitance (<i>q</i><sub>O</sub><sup>**</sup>), and 1929.30 F/g of inner capacitance (<i>q</i><sub>I</sub><sup>**</sup>) which are determined by Trasatti analysis. Moreover, the fabricated hybrid supercapacitor device provides a good specific capacitance of 320.8 F/g, a high energy density of 75.3 Wh/kg at the power density of 649.9 W/kg at 1 A/g of current density range, and 88.75% of superior capacitive retention over 10,000 cycles at 10 A/g. Therefore, a ternary metal-oxide nanocomposite electrode is proposed to be a promising material for energy-storage devices.</p>","PeriodicalId":35,"journal":{"name":"Energy & Fuels","volume":"39 1","pages":"906–920 906–920"},"PeriodicalIF":5.3000,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Designing a One-Pot Ternary Fe–Mn–Zn Oxide Positive Electrode with Enhanced Energy-Storage Properties for Hybrid Supercapacitors\",\"authors\":\"Suganya Subramaniyan,&nbsp;Muthulakshmi Veerasingam,&nbsp;Kousi Feroz Gandhi,&nbsp;Venkatesan Arumugam,&nbsp;Krishna Kumar Muthusamy and Sudhahar Sakkarapani*,&nbsp;\",\"doi\":\"10.1021/acs.energyfuels.4c0475910.1021/acs.energyfuels.4c04759\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >In recent years, ternary metal-oxide nanocomposite-based active electrodes have been investigated more effectively for supercapacitor applications due to the existence of a greater number of electroactive sites and the synergistic effect of three different transition-metal ions. Herein, Fe–Mn–Zn oxide ternary nanocomposites are synthesized using a simple and cost-effective one-pot hydrothermal approach. The characterizations of XRD, FTIR, FESEM, EDX, HRTEM, and XPS are analyzed for the synthesized Fe–Mn–Zn oxide nanocomposites to study their phases, functional groups, morphologies, purity, and binding energies. The electrochemical characteristics for the developed electrodes are studied in a three-electrode technique using CV, GCD, EIS, and a cyclic stability test. As expected, the ternary nanocomposite electrode of Fe–Mn–Zn oxide reveals a maximum specific capacitance (<i>C</i><sub>spc1</sub>) of 1673.4 F/g in comparison to other developed electrodes of ZnFe<sub>2</sub>O<sub>4</sub> (271.7 F/g) and ZnMn<sub>2</sub>O<sub>4</sub> (412.7 F/g) at the appropriate scan rate of 10 mV/s. In addition, the Fe–Mn–Zn oxide ternary nanocomposite active electrode exhibits 2616.25 F/g of total capacitance (<i>q</i><sub>T</sub><sup>**</sup>), 686.94 F/g of outer capacitance (<i>q</i><sub>O</sub><sup>**</sup>), and 1929.30 F/g of inner capacitance (<i>q</i><sub>I</sub><sup>**</sup>) which are determined by Trasatti analysis. Moreover, the fabricated hybrid supercapacitor device provides a good specific capacitance of 320.8 F/g, a high energy density of 75.3 Wh/kg at the power density of 649.9 W/kg at 1 A/g of current density range, and 88.75% of superior capacitive retention over 10,000 cycles at 10 A/g. Therefore, a ternary metal-oxide nanocomposite electrode is proposed to be a promising material for energy-storage devices.</p>\",\"PeriodicalId\":35,\"journal\":{\"name\":\"Energy & Fuels\",\"volume\":\"39 1\",\"pages\":\"906–920 906–920\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-12-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy & Fuels\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.energyfuels.4c04759\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy & Fuels","FirstCategoryId":"5","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.energyfuels.4c04759","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

近年来,由于存在更多的电活性位点和三种不同过渡金属离子的协同效应,三元金属氧化物纳米复合材料活性电极在超级电容器中的应用得到了更有效的研究。本文采用一锅水热法合成了Fe-Mn-Zn氧化物三元纳米复合材料。通过XRD、FTIR、FESEM、EDX、HRTEM和XPS等表征手段对合成的Fe-Mn-Zn氧化物纳米复合材料进行了物相、官能团、形貌、纯度和结合能等方面的研究。采用三电极技术,利用CV、GCD、EIS和循环稳定性试验研究了所制备电极的电化学特性。在合适的扫描速率为10 mV/s时,Fe-Mn-Zn氧化物纳米复合电极的最大比电容(Cspc1)为1673.4 F/g,高于ZnFe2O4 (271.7 F/g)和ZnMn2O4 (412.7 F/g)。此外,Fe-Mn-Zn氧化物三元纳米复合活性电极的总电容(qT**)为2616.25 F/g,外电容(qO**)为686.94 F/g,内电容(qI**)为1929.30 F/g。此外,所制备的混合超级电容器器件在电流密度为1 a /g时具有320.8 F/g的良好比电容,在功率密度为649.9 W/kg时具有75.3 Wh/kg的高能量密度,在10 a /g时具有88.75%的优于10,000次循环的电容保持率。因此,三元金属-氧化物纳米复合电极是一种很有前途的储能材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Designing a One-Pot Ternary Fe–Mn–Zn Oxide Positive Electrode with Enhanced Energy-Storage Properties for Hybrid Supercapacitors

Designing a One-Pot Ternary Fe–Mn–Zn Oxide Positive Electrode with Enhanced Energy-Storage Properties for Hybrid Supercapacitors

In recent years, ternary metal-oxide nanocomposite-based active electrodes have been investigated more effectively for supercapacitor applications due to the existence of a greater number of electroactive sites and the synergistic effect of three different transition-metal ions. Herein, Fe–Mn–Zn oxide ternary nanocomposites are synthesized using a simple and cost-effective one-pot hydrothermal approach. The characterizations of XRD, FTIR, FESEM, EDX, HRTEM, and XPS are analyzed for the synthesized Fe–Mn–Zn oxide nanocomposites to study their phases, functional groups, morphologies, purity, and binding energies. The electrochemical characteristics for the developed electrodes are studied in a three-electrode technique using CV, GCD, EIS, and a cyclic stability test. As expected, the ternary nanocomposite electrode of Fe–Mn–Zn oxide reveals a maximum specific capacitance (Cspc1) of 1673.4 F/g in comparison to other developed electrodes of ZnFe2O4 (271.7 F/g) and ZnMn2O4 (412.7 F/g) at the appropriate scan rate of 10 mV/s. In addition, the Fe–Mn–Zn oxide ternary nanocomposite active electrode exhibits 2616.25 F/g of total capacitance (qT**), 686.94 F/g of outer capacitance (qO**), and 1929.30 F/g of inner capacitance (qI**) which are determined by Trasatti analysis. Moreover, the fabricated hybrid supercapacitor device provides a good specific capacitance of 320.8 F/g, a high energy density of 75.3 Wh/kg at the power density of 649.9 W/kg at 1 A/g of current density range, and 88.75% of superior capacitive retention over 10,000 cycles at 10 A/g. Therefore, a ternary metal-oxide nanocomposite electrode is proposed to be a promising material for energy-storage devices.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Energy & Fuels
Energy & Fuels 工程技术-工程:化工
CiteScore
9.20
自引率
13.20%
发文量
1101
审稿时长
2.1 months
期刊介绍: Energy & Fuels publishes reports of research in the technical area defined by the intersection of the disciplines of chemistry and chemical engineering and the application domain of non-nuclear energy and fuels. This includes research directed at the formation of, exploration for, and production of fossil fuels and biomass; the properties and structure or molecular composition of both raw fuels and refined products; the chemistry involved in the processing and utilization of fuels; fuel cells and their applications; and the analytical and instrumental techniques used in investigations of the foregoing areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信