新鲜的生物3D打印胶原蛋白类型I, II和III

IF 5.5 2区 医学 Q2 MATERIALS SCIENCE, BIOMATERIALS
Samuel P Moss, Daniel J. Shiwarski and Adam W. Feinberg*, 
{"title":"新鲜的生物3D打印胶原蛋白类型I, II和III","authors":"Samuel P Moss,&nbsp;Daniel J. Shiwarski and Adam W. Feinberg*,&nbsp;","doi":"10.1021/acsbiomaterials.4c0182610.1021/acsbiomaterials.4c01826","DOIUrl":null,"url":null,"abstract":"<p >Collagens play a vital role in the mechanical integrity of tissues as well as in physical and chemical signaling throughout the body. As such, collagens are widely used biomaterials in tissue engineering; however, most 3D fabrication methods use only collagen type I and are restricted to simple cast or molded geometries that are not representative of native tissue. Freeform reversible embedding of suspended hydrogel (FRESH) 3D bioprinting has emerged as a method to fabricate complex 3D scaffolds from collagen I but has yet to be leveraged for other collagen isoforms. Here, we developed collagen type II, collagen type III, and combination bioinks for FRESH 3D bioprinting of millimeter-sized scaffolds with micrometer scale features with fidelity comparable to scaffolds fabricated with the established collagen I bioink. At the microscale, single filament extrusions were similar across all collagen bioinks with a nominal diameter of ∼100 μm using a 34-gauge needle. Scaffolds as large as 10 × 10 × 2 mm were also fabricated and showed similar overall resolution and fidelity across collagen bioinks. Finally, cell adhesion and growth on the different collagen bioinks as either cast or FRESH 3D bioprinted scaffolds were compared and found to support similar growth behaviors. In total, our results expand the range of collagen isoform bioinks that can be 3D bioprinted and demonstrate that collagen types I, II, III, and combinations thereof can all be FRESH printed with high fidelity and comparable biological response. This serves to expand the toolkit for the fabrication of tailored collagen scaffolds that can better recapitulate the extracellular matrix properties of specific tissue types.</p>","PeriodicalId":8,"journal":{"name":"ACS Biomaterials Science & Engineering","volume":"11 1","pages":"556–563 556–563"},"PeriodicalIF":5.5000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsbiomaterials.4c01826","citationCount":"0","resultStr":"{\"title\":\"FRESH 3D Bioprinting of Collagen Types I, II, and III\",\"authors\":\"Samuel P Moss,&nbsp;Daniel J. Shiwarski and Adam W. Feinberg*,&nbsp;\",\"doi\":\"10.1021/acsbiomaterials.4c0182610.1021/acsbiomaterials.4c01826\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Collagens play a vital role in the mechanical integrity of tissues as well as in physical and chemical signaling throughout the body. As such, collagens are widely used biomaterials in tissue engineering; however, most 3D fabrication methods use only collagen type I and are restricted to simple cast or molded geometries that are not representative of native tissue. Freeform reversible embedding of suspended hydrogel (FRESH) 3D bioprinting has emerged as a method to fabricate complex 3D scaffolds from collagen I but has yet to be leveraged for other collagen isoforms. Here, we developed collagen type II, collagen type III, and combination bioinks for FRESH 3D bioprinting of millimeter-sized scaffolds with micrometer scale features with fidelity comparable to scaffolds fabricated with the established collagen I bioink. At the microscale, single filament extrusions were similar across all collagen bioinks with a nominal diameter of ∼100 μm using a 34-gauge needle. Scaffolds as large as 10 × 10 × 2 mm were also fabricated and showed similar overall resolution and fidelity across collagen bioinks. Finally, cell adhesion and growth on the different collagen bioinks as either cast or FRESH 3D bioprinted scaffolds were compared and found to support similar growth behaviors. In total, our results expand the range of collagen isoform bioinks that can be 3D bioprinted and demonstrate that collagen types I, II, III, and combinations thereof can all be FRESH printed with high fidelity and comparable biological response. This serves to expand the toolkit for the fabrication of tailored collagen scaffolds that can better recapitulate the extracellular matrix properties of specific tissue types.</p>\",\"PeriodicalId\":8,\"journal\":{\"name\":\"ACS Biomaterials Science & Engineering\",\"volume\":\"11 1\",\"pages\":\"556–563 556–563\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2024-12-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/epdf/10.1021/acsbiomaterials.4c01826\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Biomaterials Science & Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsbiomaterials.4c01826\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Biomaterials Science & Engineering","FirstCategoryId":"5","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsbiomaterials.4c01826","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

胶原蛋白在组织的机械完整性以及整个身体的物理和化学信号中起着至关重要的作用。因此,胶原蛋白是广泛应用于组织工程的生物材料;然而,大多数3D制造方法仅使用I型胶原蛋白,并且仅限于简单的铸造或模制几何形状,这些几何形状不能代表原生组织。自由形式可逆悬浮水凝胶(FRESH)生物3D打印已经成为一种利用胶原蛋白制造复杂3D支架的方法,但尚未用于其他胶原异构体。在这里,我们开发了II型胶原蛋白、III型胶原蛋白和组合生物墨水,用于FRESH 3D生物打印毫米级支架,具有微米级特征,其保真度与用已建立的I型胶原生物墨水制造的支架相当。在微尺度下,使用34号针头,所有胶原生物墨水的单丝挤出物相似,标称直径为~ 100 μm。大至10 × 10 × 2mm的支架也被制造出来,并且在胶原生物墨水中显示出相似的整体分辨率和保真度。最后,比较了不同的胶原蛋白生物墨水作为cast和FRESH生物3D打印支架的细胞粘附和生长情况,发现它们支持相似的生长行为。总的来说,我们的研究结果扩大了可3D生物打印的胶原异型生物墨水的范围,并证明了I型,II型,III型胶原及其组合都可以以高保真度和相当的生物反应进行FRESH打印。这有助于扩大定制胶原蛋白支架的制造工具包,可以更好地概括特定组织类型的细胞外基质特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
FRESH 3D Bioprinting of Collagen Types I, II, and III

Collagens play a vital role in the mechanical integrity of tissues as well as in physical and chemical signaling throughout the body. As such, collagens are widely used biomaterials in tissue engineering; however, most 3D fabrication methods use only collagen type I and are restricted to simple cast or molded geometries that are not representative of native tissue. Freeform reversible embedding of suspended hydrogel (FRESH) 3D bioprinting has emerged as a method to fabricate complex 3D scaffolds from collagen I but has yet to be leveraged for other collagen isoforms. Here, we developed collagen type II, collagen type III, and combination bioinks for FRESH 3D bioprinting of millimeter-sized scaffolds with micrometer scale features with fidelity comparable to scaffolds fabricated with the established collagen I bioink. At the microscale, single filament extrusions were similar across all collagen bioinks with a nominal diameter of ∼100 μm using a 34-gauge needle. Scaffolds as large as 10 × 10 × 2 mm were also fabricated and showed similar overall resolution and fidelity across collagen bioinks. Finally, cell adhesion and growth on the different collagen bioinks as either cast or FRESH 3D bioprinted scaffolds were compared and found to support similar growth behaviors. In total, our results expand the range of collagen isoform bioinks that can be 3D bioprinted and demonstrate that collagen types I, II, III, and combinations thereof can all be FRESH printed with high fidelity and comparable biological response. This serves to expand the toolkit for the fabrication of tailored collagen scaffolds that can better recapitulate the extracellular matrix properties of specific tissue types.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Biomaterials Science & Engineering
ACS Biomaterials Science & Engineering Materials Science-Biomaterials
CiteScore
10.30
自引率
3.40%
发文量
413
期刊介绍: ACS Biomaterials Science & Engineering is the leading journal in the field of biomaterials, serving as an international forum for publishing cutting-edge research and innovative ideas on a broad range of topics: Applications and Health – implantable tissues and devices, prosthesis, health risks, toxicology Bio-interactions and Bio-compatibility – material-biology interactions, chemical/morphological/structural communication, mechanobiology, signaling and biological responses, immuno-engineering, calcification, coatings, corrosion and degradation of biomaterials and devices, biophysical regulation of cell functions Characterization, Synthesis, and Modification – new biomaterials, bioinspired and biomimetic approaches to biomaterials, exploiting structural hierarchy and architectural control, combinatorial strategies for biomaterials discovery, genetic biomaterials design, synthetic biology, new composite systems, bionics, polymer synthesis Controlled Release and Delivery Systems – biomaterial-based drug and gene delivery, bio-responsive delivery of regulatory molecules, pharmaceutical engineering Healthcare Advances – clinical translation, regulatory issues, patient safety, emerging trends Imaging and Diagnostics – imaging agents and probes, theranostics, biosensors, monitoring Manufacturing and Technology – 3D printing, inks, organ-on-a-chip, bioreactor/perfusion systems, microdevices, BioMEMS, optics and electronics interfaces with biomaterials, systems integration Modeling and Informatics Tools – scaling methods to guide biomaterial design, predictive algorithms for structure-function, biomechanics, integrating bioinformatics with biomaterials discovery, metabolomics in the context of biomaterials Tissue Engineering and Regenerative Medicine – basic and applied studies, cell therapies, scaffolds, vascularization, bioartificial organs, transplantation and functionality, cellular agriculture
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信