自旋交叉柔性金属-有机框架的解码框架动力学

IF 12.1 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Small Pub Date : 2025-02-03 DOI:10.1002/smll.202411201
Ana Martinez-Martinez, Jorge Albalad, Esther Resines-Urien, E. Carolina Sañudo, A. Lorenzo Mariano, Oscar Fabelo, Jose Alberto Rodríguez-Velamazán, Roberta Poloni, Daniel Maspoch, José Sánchez Costa
{"title":"自旋交叉柔性金属-有机框架的解码框架动力学","authors":"Ana Martinez-Martinez,&nbsp;Jorge Albalad,&nbsp;Esther Resines-Urien,&nbsp;E. Carolina Sañudo,&nbsp;A. Lorenzo Mariano,&nbsp;Oscar Fabelo,&nbsp;Jose Alberto Rodríguez-Velamazán,&nbsp;Roberta Poloni,&nbsp;Daniel Maspoch,&nbsp;José Sánchez Costa","doi":"10.1002/smll.202411201","DOIUrl":null,"url":null,"abstract":"<p>Functional spin crossover (SCO) metal–organic frameworks (MOFs) hold promise for miniaturized spin-based devices due to their tuneable molecule-based properties near room temperature. SCO describes the phenomenon where transition metal ions switch between high spin (HS) and low spin (LS) states upon external stimuli. However, even simple guest molecules like water can significantly alter the properties of these materials. Understanding the interplay between SCO and these molecules is therefore crucial. This work investigates this interplay in a fascinating 3D Fe(II) SCO-MOF, recently reported to exhibit reversible conductivity even in bulk. A combined experimental and computational approach is employed to explore how guest molecule uptake/release influences SCO dynamics including a transition from partial HS/LS to a fully LS state at high temperatures, (named reverse SCO) and ligand disorder-order behavior. The findings reveal a solid-state mechanism that differs from those previously described.</p>","PeriodicalId":228,"journal":{"name":"Small","volume":"21 9","pages":""},"PeriodicalIF":12.1000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Decoding Framework Dynamics in a Spin Crossover Flexible Metal–Organic Framework\",\"authors\":\"Ana Martinez-Martinez,&nbsp;Jorge Albalad,&nbsp;Esther Resines-Urien,&nbsp;E. Carolina Sañudo,&nbsp;A. Lorenzo Mariano,&nbsp;Oscar Fabelo,&nbsp;Jose Alberto Rodríguez-Velamazán,&nbsp;Roberta Poloni,&nbsp;Daniel Maspoch,&nbsp;José Sánchez Costa\",\"doi\":\"10.1002/smll.202411201\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Functional spin crossover (SCO) metal–organic frameworks (MOFs) hold promise for miniaturized spin-based devices due to their tuneable molecule-based properties near room temperature. SCO describes the phenomenon where transition metal ions switch between high spin (HS) and low spin (LS) states upon external stimuli. However, even simple guest molecules like water can significantly alter the properties of these materials. Understanding the interplay between SCO and these molecules is therefore crucial. This work investigates this interplay in a fascinating 3D Fe(II) SCO-MOF, recently reported to exhibit reversible conductivity even in bulk. A combined experimental and computational approach is employed to explore how guest molecule uptake/release influences SCO dynamics including a transition from partial HS/LS to a fully LS state at high temperatures, (named reverse SCO) and ligand disorder-order behavior. The findings reveal a solid-state mechanism that differs from those previously described.</p>\",\"PeriodicalId\":228,\"journal\":{\"name\":\"Small\",\"volume\":\"21 9\",\"pages\":\"\"},\"PeriodicalIF\":12.1000,\"publicationDate\":\"2025-02-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Small\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/smll.202411201\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/smll.202411201","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

功能自旋交叉(SCO)金属有机框架(mof)由于其在室温附近可调谐的分子性质而有望用于小型化自旋基器件。SCO描述了过渡金属离子在外界刺激下在高自旋(HS)和低自旋(LS)状态之间切换的现象。然而,即使是像水这样简单的客体分子也能显著改变这些材料的性质。因此,了解SCO与这些分子之间的相互作用至关重要。这项工作研究了这种相互作用在一个迷人的3D Fe(II) SCO-MOF,最近报道显示,即使在散装中也表现出可逆的导电性。采用实验和计算相结合的方法来探索客体分子摄取/释放如何影响SCO动力学,包括高温下从部分HS/LS到完全LS状态的转变(称为逆SCO)和配体无序行为。这一发现揭示了一种不同于先前描述的固态机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Decoding Framework Dynamics in a Spin Crossover Flexible Metal–Organic Framework

Decoding Framework Dynamics in a Spin Crossover Flexible Metal–Organic Framework

Functional spin crossover (SCO) metal–organic frameworks (MOFs) hold promise for miniaturized spin-based devices due to their tuneable molecule-based properties near room temperature. SCO describes the phenomenon where transition metal ions switch between high spin (HS) and low spin (LS) states upon external stimuli. However, even simple guest molecules like water can significantly alter the properties of these materials. Understanding the interplay between SCO and these molecules is therefore crucial. This work investigates this interplay in a fascinating 3D Fe(II) SCO-MOF, recently reported to exhibit reversible conductivity even in bulk. A combined experimental and computational approach is employed to explore how guest molecule uptake/release influences SCO dynamics including a transition from partial HS/LS to a fully LS state at high temperatures, (named reverse SCO) and ligand disorder-order behavior. The findings reveal a solid-state mechanism that differs from those previously described.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Small
Small 工程技术-材料科学:综合
CiteScore
17.70
自引率
3.80%
发文量
1830
审稿时长
2.1 months
期刊介绍: Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments. With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology. Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信