地形对北大西洋深水输送季节变化的影响

IF 4.6 1区 地球科学 Q1 GEOSCIENCES, MULTIDISCIPLINARY
Lei Chen, Jiayan Yang, Xiaopei Lin, Lixin Wu
{"title":"地形对北大西洋深水输送季节变化的影响","authors":"Lei Chen,&nbsp;Jiayan Yang,&nbsp;Xiaopei Lin,&nbsp;Lixin Wu","doi":"10.1029/2024GL113883","DOIUrl":null,"url":null,"abstract":"<p>Ocean circulation responds to seasonal and longer timescale changes in atmospheric forcing through the propagation of Rossby and boundary waves, which transmit pressure anomalies and influence geostrophic velocities along their pathways. Rossby waves are guided by potential vorticity isolines shaped by bathymetry. This study hypothesizes that seasonal velocity variability in the North Atlantic Ocean's deep water layer is primarily driven by wind stress and that its pattern and magnitude are strongly influenced by bathymetry. Analysis of satellite gravimetric observations, ocean state estimates, and wind-driven model simulations reveals that Ocean Bottom Pressure (OBP) and velocity in the deep water layer are significantly modulated by bathymetry, with pronounced variability near topographic features. These findings suggest that measurements of the Deep Western Boundary Current alone may be insufficiently to fully capture the net variability of the Atlantic Meridional Overturning Circulation (AMOC).</p>","PeriodicalId":12523,"journal":{"name":"Geophysical Research Letters","volume":"52 3","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024GL113883","citationCount":"0","resultStr":"{\"title\":\"Topographic Effects on Seasonal Variations of the North Atlantic Deep Water Transport\",\"authors\":\"Lei Chen,&nbsp;Jiayan Yang,&nbsp;Xiaopei Lin,&nbsp;Lixin Wu\",\"doi\":\"10.1029/2024GL113883\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Ocean circulation responds to seasonal and longer timescale changes in atmospheric forcing through the propagation of Rossby and boundary waves, which transmit pressure anomalies and influence geostrophic velocities along their pathways. Rossby waves are guided by potential vorticity isolines shaped by bathymetry. This study hypothesizes that seasonal velocity variability in the North Atlantic Ocean's deep water layer is primarily driven by wind stress and that its pattern and magnitude are strongly influenced by bathymetry. Analysis of satellite gravimetric observations, ocean state estimates, and wind-driven model simulations reveals that Ocean Bottom Pressure (OBP) and velocity in the deep water layer are significantly modulated by bathymetry, with pronounced variability near topographic features. These findings suggest that measurements of the Deep Western Boundary Current alone may be insufficiently to fully capture the net variability of the Atlantic Meridional Overturning Circulation (AMOC).</p>\",\"PeriodicalId\":12523,\"journal\":{\"name\":\"Geophysical Research Letters\",\"volume\":\"52 3\",\"pages\":\"\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-02-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024GL113883\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geophysical Research Letters\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1029/2024GL113883\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geophysical Research Letters","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024GL113883","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

海洋环流通过罗斯比波和边界波的传播响应大气强迫的季节性和更长时间尺度变化,后者传递压力异常并影响其路径上的地转速度。罗斯比波由测深法形成的位涡等值线引导。本研究假设北大西洋深水层的季节性速度变化主要由风应力驱动,其模式和大小受水深测量的强烈影响。卫星重力观测、海洋状态估计和风驱动模式模拟的分析表明,深海层的海底压力(OBP)和速度受到水深测量的显著调节,在地形特征附近具有明显的变化。这些发现表明,仅对深西部边界流的测量可能不足以充分捕捉大西洋经向翻转环流(AMOC)的净变率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Topographic Effects on Seasonal Variations of the North Atlantic Deep Water Transport

Topographic Effects on Seasonal Variations of the North Atlantic Deep Water Transport

Ocean circulation responds to seasonal and longer timescale changes in atmospheric forcing through the propagation of Rossby and boundary waves, which transmit pressure anomalies and influence geostrophic velocities along their pathways. Rossby waves are guided by potential vorticity isolines shaped by bathymetry. This study hypothesizes that seasonal velocity variability in the North Atlantic Ocean's deep water layer is primarily driven by wind stress and that its pattern and magnitude are strongly influenced by bathymetry. Analysis of satellite gravimetric observations, ocean state estimates, and wind-driven model simulations reveals that Ocean Bottom Pressure (OBP) and velocity in the deep water layer are significantly modulated by bathymetry, with pronounced variability near topographic features. These findings suggest that measurements of the Deep Western Boundary Current alone may be insufficiently to fully capture the net variability of the Atlantic Meridional Overturning Circulation (AMOC).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Geophysical Research Letters
Geophysical Research Letters 地学-地球科学综合
CiteScore
9.00
自引率
9.60%
发文量
1588
审稿时长
2.2 months
期刊介绍: Geophysical Research Letters (GRL) publishes high-impact, innovative, and timely research on major scientific advances in all the major geoscience disciplines. Papers are communications-length articles and should have broad and immediate implications in their discipline or across the geosciences. GRLmaintains the fastest turn-around of all high-impact publications in the geosciences and works closely with authors to ensure broad visibility of top papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信