用联合全波形反演揭示中亚地区地幔动力学

IF 4.1 2区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS
Yajian Gao, Frederik Tilmann, Xiaohui Yuan, Andreas Rietbrock, Sofia-Katerina Kufner, Wei Li, Bernd Schurr, Andreas Fichtner
{"title":"用联合全波形反演揭示中亚地区地幔动力学","authors":"Yajian Gao,&nbsp;Frederik Tilmann,&nbsp;Xiaohui Yuan,&nbsp;Andreas Rietbrock,&nbsp;Sofia-Katerina Kufner,&nbsp;Wei Li,&nbsp;Bernd Schurr,&nbsp;Andreas Fichtner","doi":"10.1029/2024JB030061","DOIUrl":null,"url":null,"abstract":"<p>We use the full waveform inversion method to study the crustal-mantle seismic structure beneath Central Asia. By combining earthquake waveforms and ambient noise cross-correlations, we construct a 3D model of Vp and Vs down to a depth of 220 km. This model reveals a complex Indian-Asian plate configuration and interaction, resulting from the plate subduction, indentation, and break-off. Beneath the Hindu Kush, the marginal Indian slab with its lower crust is successfully imaged, the latter of which hosts vigorous intermediate-depth seismicity. The subducted marginal Indian slab can be traced further east to the Kohistan Arc, which is a previously undetected structure. We first imaged a flat cratonic Indian plate beneath the Pamir. The indentation of the cratonic Indian plate forces the Asian plate to delaminate, indicated by the south-eastwards dipping high-velocity anomalies, atop which a south-dipping low-velocity zone is observed with higher resolution than previous studies, which we interpret as the delaminated Asian lower crust. In addition, a sharp velocity transition at lithospheric depth is newly discovered and coincides with the Talas-Ferghana fault, delineating the boundary of the Ferghana basin with the Central Tian Shan. Low-velocity anomalies mainly focus beneath the south and northern part of the Central Tian Shan with deep Moho, indicating the lithosphere is possibly delaminated and the deformation of the Central Tian Shan is probably concentrated at the north and south margins by the Tarim basin and Kazakh Shield, respectively. In contrast, West Tian Shan displays a simpler lithospheric structure with a single deep Moho.</p>","PeriodicalId":15864,"journal":{"name":"Journal of Geophysical Research: Solid Earth","volume":"130 2","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024JB030061","citationCount":"0","resultStr":"{\"title\":\"Unraveling the Mantle Dynamics in Central Asia With Joint Full Waveform Inversion\",\"authors\":\"Yajian Gao,&nbsp;Frederik Tilmann,&nbsp;Xiaohui Yuan,&nbsp;Andreas Rietbrock,&nbsp;Sofia-Katerina Kufner,&nbsp;Wei Li,&nbsp;Bernd Schurr,&nbsp;Andreas Fichtner\",\"doi\":\"10.1029/2024JB030061\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We use the full waveform inversion method to study the crustal-mantle seismic structure beneath Central Asia. By combining earthquake waveforms and ambient noise cross-correlations, we construct a 3D model of Vp and Vs down to a depth of 220 km. This model reveals a complex Indian-Asian plate configuration and interaction, resulting from the plate subduction, indentation, and break-off. Beneath the Hindu Kush, the marginal Indian slab with its lower crust is successfully imaged, the latter of which hosts vigorous intermediate-depth seismicity. The subducted marginal Indian slab can be traced further east to the Kohistan Arc, which is a previously undetected structure. We first imaged a flat cratonic Indian plate beneath the Pamir. The indentation of the cratonic Indian plate forces the Asian plate to delaminate, indicated by the south-eastwards dipping high-velocity anomalies, atop which a south-dipping low-velocity zone is observed with higher resolution than previous studies, which we interpret as the delaminated Asian lower crust. In addition, a sharp velocity transition at lithospheric depth is newly discovered and coincides with the Talas-Ferghana fault, delineating the boundary of the Ferghana basin with the Central Tian Shan. Low-velocity anomalies mainly focus beneath the south and northern part of the Central Tian Shan with deep Moho, indicating the lithosphere is possibly delaminated and the deformation of the Central Tian Shan is probably concentrated at the north and south margins by the Tarim basin and Kazakh Shield, respectively. In contrast, West Tian Shan displays a simpler lithospheric structure with a single deep Moho.</p>\",\"PeriodicalId\":15864,\"journal\":{\"name\":\"Journal of Geophysical Research: Solid Earth\",\"volume\":\"130 2\",\"pages\":\"\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2025-02-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024JB030061\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Geophysical Research: Solid Earth\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1029/2024JB030061\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Solid Earth","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024JB030061","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

利用全波形反演方法对中亚地壳-地幔地震结构进行了研究。通过结合地震波形和环境噪声相互关系,我们构建了深度为220 km的Vp和Vs的三维模型。该模型揭示了一个复杂的印度-亚洲板块构造和相互作用,这是由板块俯冲、压痕和断裂造成的。在兴都库什山脉下,成功地成像了印度边缘板块及其下地壳,后者具有强烈的中深度地震活动。俯冲的边缘印度板块可以进一步向东追溯到科希斯坦弧,这是一个以前未被发现的构造。我们首先拍摄了帕米尔高原下平坦的克拉通印度板块。克拉通印度板块的压痕迫使亚洲板块剥离,表现为东南倾的高速异常,其顶部有一个南倾的低速带,分辨率高于以往的研究,我们将其解释为剥离的亚洲下地壳。此外,在岩石圈深处新发现了一个快速的速度转变,并与塔拉斯-费尔干纳断裂重合,划定了费尔干纳盆地与中天山的边界。低速异常主要集中在中天山南缘和北缘下方,莫霍面较深,表明岩石圈可能存在剥离作用,中天山的变形可能集中在塔里木盆地和哈萨克地盾的南北边缘。西天山岩石圈结构较为简单,深莫霍构造单一。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Unraveling the Mantle Dynamics in Central Asia With Joint Full Waveform Inversion

Unraveling the Mantle Dynamics in Central Asia With Joint Full Waveform Inversion

We use the full waveform inversion method to study the crustal-mantle seismic structure beneath Central Asia. By combining earthquake waveforms and ambient noise cross-correlations, we construct a 3D model of Vp and Vs down to a depth of 220 km. This model reveals a complex Indian-Asian plate configuration and interaction, resulting from the plate subduction, indentation, and break-off. Beneath the Hindu Kush, the marginal Indian slab with its lower crust is successfully imaged, the latter of which hosts vigorous intermediate-depth seismicity. The subducted marginal Indian slab can be traced further east to the Kohistan Arc, which is a previously undetected structure. We first imaged a flat cratonic Indian plate beneath the Pamir. The indentation of the cratonic Indian plate forces the Asian plate to delaminate, indicated by the south-eastwards dipping high-velocity anomalies, atop which a south-dipping low-velocity zone is observed with higher resolution than previous studies, which we interpret as the delaminated Asian lower crust. In addition, a sharp velocity transition at lithospheric depth is newly discovered and coincides with the Talas-Ferghana fault, delineating the boundary of the Ferghana basin with the Central Tian Shan. Low-velocity anomalies mainly focus beneath the south and northern part of the Central Tian Shan with deep Moho, indicating the lithosphere is possibly delaminated and the deformation of the Central Tian Shan is probably concentrated at the north and south margins by the Tarim basin and Kazakh Shield, respectively. In contrast, West Tian Shan displays a simpler lithospheric structure with a single deep Moho.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Geophysical Research: Solid Earth
Journal of Geophysical Research: Solid Earth Earth and Planetary Sciences-Geophysics
CiteScore
7.50
自引率
15.40%
发文量
559
期刊介绍: The Journal of Geophysical Research: Solid Earth serves as the premier publication for the breadth of solid Earth geophysics including (in alphabetical order): electromagnetic methods; exploration geophysics; geodesy and gravity; geodynamics, rheology, and plate kinematics; geomagnetism and paleomagnetism; hydrogeophysics; Instruments, techniques, and models; solid Earth interactions with the cryosphere, atmosphere, oceans, and climate; marine geology and geophysics; natural and anthropogenic hazards; near surface geophysics; petrology, geochemistry, and mineralogy; planet Earth physics and chemistry; rock mechanics and deformation; seismology; tectonophysics; and volcanology. JGR: Solid Earth has long distinguished itself as the venue for publication of Research Articles backed solidly by data and as well as presenting theoretical and numerical developments with broad applications. Research Articles published in JGR: Solid Earth have had long-term impacts in their fields. JGR: Solid Earth provides a venue for special issues and special themes based on conferences, workshops, and community initiatives. JGR: Solid Earth also publishes Commentaries on research and emerging trends in the field; these are commissioned by the editors, and suggestion are welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信