David A. Kring, Danielle P. Kallenborn, Gareth S. Collins
{"title":"月球上的大峡谷","authors":"David A. Kring, Danielle P. Kallenborn, Gareth S. Collins","doi":"10.1038/s41467-024-55675-z","DOIUrl":null,"url":null,"abstract":"<p>High energy streams of rock ejected from the Schrödinger impact basin carved two canyons in the lunar crust that are comparable in size to the Grand Canyon of North America. Here we use photogeologic mapping of those canyons and related impact ejecta deposits to show the trajectory of the impacting asteroid or comet, which produced an asymmetrical pattern of crater excavation and transport of ejected debris. The flow directions of that ejected debris and the speed of its subsequent impact with the lunar surface are calculated, as is the energy that carved the canyons in less than ten minutes. The study implies that most of the excavated debris was ejected away from the lunar south pole, minimizing the amount of debris that covers the > 4 billion year old units that will be explored by Artemis astronauts.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"20 1","pages":""},"PeriodicalIF":15.7000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Grand canyons on the Moon\",\"authors\":\"David A. Kring, Danielle P. Kallenborn, Gareth S. Collins\",\"doi\":\"10.1038/s41467-024-55675-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>High energy streams of rock ejected from the Schrödinger impact basin carved two canyons in the lunar crust that are comparable in size to the Grand Canyon of North America. Here we use photogeologic mapping of those canyons and related impact ejecta deposits to show the trajectory of the impacting asteroid or comet, which produced an asymmetrical pattern of crater excavation and transport of ejected debris. The flow directions of that ejected debris and the speed of its subsequent impact with the lunar surface are calculated, as is the energy that carved the canyons in less than ten minutes. The study implies that most of the excavated debris was ejected away from the lunar south pole, minimizing the amount of debris that covers the > 4 billion year old units that will be explored by Artemis astronauts.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"20 1\",\"pages\":\"\"},\"PeriodicalIF\":15.7000,\"publicationDate\":\"2025-02-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-024-55675-z\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-024-55675-z","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
High energy streams of rock ejected from the Schrödinger impact basin carved two canyons in the lunar crust that are comparable in size to the Grand Canyon of North America. Here we use photogeologic mapping of those canyons and related impact ejecta deposits to show the trajectory of the impacting asteroid or comet, which produced an asymmetrical pattern of crater excavation and transport of ejected debris. The flow directions of that ejected debris and the speed of its subsequent impact with the lunar surface are calculated, as is the energy that carved the canyons in less than ten minutes. The study implies that most of the excavated debris was ejected away from the lunar south pole, minimizing the amount of debris that covers the > 4 billion year old units that will be explored by Artemis astronauts.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.