{"title":"通过桥接离散变量和连续变量编码来纠缠Schrödinger的cat状态","authors":"Daisuke Hoshi, Toshiaki Nagase, Sangil Kwon, Daisuke Iyama, Takahiko Kamiya, Shiori Fujii, Hiroto Mukai, Shahnawaz Ahmed, Anton Frisk Kockum, Shohei Watabe, Fumiki Yoshihara, Jaw-Shen Tsai","doi":"10.1038/s41467-025-56503-8","DOIUrl":null,"url":null,"abstract":"<p>In quantum information processing, two primary research directions have emerged: one based on discrete variables (DV) and the other on the structure of quantum states in a continuous-variable (CV) space. Integrating these two approaches could unlock new potentials, overcoming their respective limitations. Here, we show that such a DV–CV hybrid approach, applied to superconducting Kerr parametric oscillators (KPOs), enables us to entangle a pair of Schrödinger’s cat states by two methods. The first involves the entanglement-preserving conversion between Bell states in the Fock-state basis (DV encoding) and those in the cat-state basis (CV encoding). The second method implements a <span>\\(\\sqrt{{{{\\rm{iSWAP}}}}}\\)</span> gate between two cat states following the procedure for Fock-state encoding. This simple and fast gate operation completes a universal quantum gate set in a KPO system. Our work offers powerful applications of DV–CV hybridization and marks a first step toward developing a multi-qubit platform based on planar KPO systems.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"39 1","pages":""},"PeriodicalIF":15.7000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Entangling Schrödinger’s cat states by bridging discrete- and continuous-variable encoding\",\"authors\":\"Daisuke Hoshi, Toshiaki Nagase, Sangil Kwon, Daisuke Iyama, Takahiko Kamiya, Shiori Fujii, Hiroto Mukai, Shahnawaz Ahmed, Anton Frisk Kockum, Shohei Watabe, Fumiki Yoshihara, Jaw-Shen Tsai\",\"doi\":\"10.1038/s41467-025-56503-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In quantum information processing, two primary research directions have emerged: one based on discrete variables (DV) and the other on the structure of quantum states in a continuous-variable (CV) space. Integrating these two approaches could unlock new potentials, overcoming their respective limitations. Here, we show that such a DV–CV hybrid approach, applied to superconducting Kerr parametric oscillators (KPOs), enables us to entangle a pair of Schrödinger’s cat states by two methods. The first involves the entanglement-preserving conversion between Bell states in the Fock-state basis (DV encoding) and those in the cat-state basis (CV encoding). The second method implements a <span>\\\\(\\\\sqrt{{{{\\\\rm{iSWAP}}}}}\\\\)</span> gate between two cat states following the procedure for Fock-state encoding. This simple and fast gate operation completes a universal quantum gate set in a KPO system. Our work offers powerful applications of DV–CV hybridization and marks a first step toward developing a multi-qubit platform based on planar KPO systems.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"39 1\",\"pages\":\"\"},\"PeriodicalIF\":15.7000,\"publicationDate\":\"2025-02-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-025-56503-8\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-56503-8","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Entangling Schrödinger’s cat states by bridging discrete- and continuous-variable encoding
In quantum information processing, two primary research directions have emerged: one based on discrete variables (DV) and the other on the structure of quantum states in a continuous-variable (CV) space. Integrating these two approaches could unlock new potentials, overcoming their respective limitations. Here, we show that such a DV–CV hybrid approach, applied to superconducting Kerr parametric oscillators (KPOs), enables us to entangle a pair of Schrödinger’s cat states by two methods. The first involves the entanglement-preserving conversion between Bell states in the Fock-state basis (DV encoding) and those in the cat-state basis (CV encoding). The second method implements a \(\sqrt{{{{\rm{iSWAP}}}}}\) gate between two cat states following the procedure for Fock-state encoding. This simple and fast gate operation completes a universal quantum gate set in a KPO system. Our work offers powerful applications of DV–CV hybridization and marks a first step toward developing a multi-qubit platform based on planar KPO systems.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.