{"title":"进化Pareto集学习中结构约束的处理","authors":"Xi Lin;Xiaoyuan Zhang;Zhiyuan Yang;Qingfu Zhang","doi":"10.1109/TEVC.2025.3537986","DOIUrl":null,"url":null,"abstract":"In the past few decades, many multiobjective evolutionary optimization algorithms (MOEAs) have been proposed to find a finite set of approximate Pareto solutions for a given problem in a single run. However, in many real-world applications, it could be desirable to have structure constraints on the entire optimal solution set, which define the patterns shared among all solutions. The current population-based MOEAs cannot properly handle such requirements. In this work, we make a first attempt to incorporate the structure constraints into the whole solution set. Specifically, we propose to model such a multiobjective optimization problem as a set optimization problem with structure constraints. The structure constraints define some patterns that all the solutions are required to share. Such patterns can be fixed components shared by all solutions, specific relations among decision variables, and the required shape of the Pareto set. In addition, we develop a simple yet efficient evolutionary stochastic optimization method to learn the set model, which only requires a low computational budget similar to classic MOEAs. With our proposed method, the decision-makers can easily tradeoff the Pareto optimality with preferred structures, which is not supported by other MOEAs. A set of experiments on benchmark test suites and real-world application problems demonstrates that our proposed method is effective.","PeriodicalId":13206,"journal":{"name":"IEEE Transactions on Evolutionary Computation","volume":"29 3","pages":"616-630"},"PeriodicalIF":11.7000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dealing With Structure Constraints in Evolutionary Pareto Set Learning\",\"authors\":\"Xi Lin;Xiaoyuan Zhang;Zhiyuan Yang;Qingfu Zhang\",\"doi\":\"10.1109/TEVC.2025.3537986\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the past few decades, many multiobjective evolutionary optimization algorithms (MOEAs) have been proposed to find a finite set of approximate Pareto solutions for a given problem in a single run. However, in many real-world applications, it could be desirable to have structure constraints on the entire optimal solution set, which define the patterns shared among all solutions. The current population-based MOEAs cannot properly handle such requirements. In this work, we make a first attempt to incorporate the structure constraints into the whole solution set. Specifically, we propose to model such a multiobjective optimization problem as a set optimization problem with structure constraints. The structure constraints define some patterns that all the solutions are required to share. Such patterns can be fixed components shared by all solutions, specific relations among decision variables, and the required shape of the Pareto set. In addition, we develop a simple yet efficient evolutionary stochastic optimization method to learn the set model, which only requires a low computational budget similar to classic MOEAs. With our proposed method, the decision-makers can easily tradeoff the Pareto optimality with preferred structures, which is not supported by other MOEAs. A set of experiments on benchmark test suites and real-world application problems demonstrates that our proposed method is effective.\",\"PeriodicalId\":13206,\"journal\":{\"name\":\"IEEE Transactions on Evolutionary Computation\",\"volume\":\"29 3\",\"pages\":\"616-630\"},\"PeriodicalIF\":11.7000,\"publicationDate\":\"2025-02-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Evolutionary Computation\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10870122/\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Evolutionary Computation","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10870122/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Dealing With Structure Constraints in Evolutionary Pareto Set Learning
In the past few decades, many multiobjective evolutionary optimization algorithms (MOEAs) have been proposed to find a finite set of approximate Pareto solutions for a given problem in a single run. However, in many real-world applications, it could be desirable to have structure constraints on the entire optimal solution set, which define the patterns shared among all solutions. The current population-based MOEAs cannot properly handle such requirements. In this work, we make a first attempt to incorporate the structure constraints into the whole solution set. Specifically, we propose to model such a multiobjective optimization problem as a set optimization problem with structure constraints. The structure constraints define some patterns that all the solutions are required to share. Such patterns can be fixed components shared by all solutions, specific relations among decision variables, and the required shape of the Pareto set. In addition, we develop a simple yet efficient evolutionary stochastic optimization method to learn the set model, which only requires a low computational budget similar to classic MOEAs. With our proposed method, the decision-makers can easily tradeoff the Pareto optimality with preferred structures, which is not supported by other MOEAs. A set of experiments on benchmark test suites and real-world application problems demonstrates that our proposed method is effective.
期刊介绍:
The IEEE Transactions on Evolutionary Computation is published by the IEEE Computational Intelligence Society on behalf of 13 societies: Circuits and Systems; Computer; Control Systems; Engineering in Medicine and Biology; Industrial Electronics; Industry Applications; Lasers and Electro-Optics; Oceanic Engineering; Power Engineering; Robotics and Automation; Signal Processing; Social Implications of Technology; and Systems, Man, and Cybernetics. The journal publishes original papers in evolutionary computation and related areas such as nature-inspired algorithms, population-based methods, optimization, and hybrid systems. It welcomes both purely theoretical papers and application papers that provide general insights into these areas of computation.