电荷迁移摩擦纳米发电机与串联电解槽直接阻抗匹配的高效电解系统

IF 30.8 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Yu Deng, Qian Qin, Wencong He, Hengyu Guo and Jie Chen
{"title":"电荷迁移摩擦纳米发电机与串联电解槽直接阻抗匹配的高效电解系统","authors":"Yu Deng, Qian Qin, Wencong He, Hengyu Guo and Jie Chen","doi":"10.1039/D4EE05522E","DOIUrl":null,"url":null,"abstract":"<p >As an electromechanical conversion technology, triboelectric nanogenerators (TENGs) are widely used in water electrolysis for hydrogen production. Nevertheless, the impedance mismatch between TENGs and conventional electrolysers significantly reduces energy utilization efficiency, necessitating the integration of power management circuits (PMCs) to mitigate lost energy. Herein, we propose a highly efficient electrolysis system that establishes direct impedance matching between a charge migration triboelectric nanogenerator (CM-TENG) and series-connected electrolysers (SCEs). By leveraging the charge migration of polyurethane and repositioning the tribo-material's back-electrode, the surface charge density of the CM-TENG is enhanced to 306.2 μC m<small><sup>−2</sup></small>. With systematic parameter optimization, the matched impedance of the CM-TENG is reduced to 2.5 MΩ, delivering a peak power of 451.6 mW. Furthermore, through the serpentine-connected array of electrolytic cells, the impendence of 200 SCEs is tuned to perfectly match that of the CM-TENG. Under motor-driven CM-TENG operation, this system achieves an energy utilization efficiency of 98.9%, along with a hydrogen production rate of 1851.9 μL min<small><sup>−1</sup></small> m<small><sup>−2</sup></small>, which is 7.1 times higher than what is obtained using PMCs. This work not only promotes the progress of green hydrogen production but also provides guidance for highly efficient triboelectric self-powered systems.</p>","PeriodicalId":72,"journal":{"name":"Energy & Environmental Science","volume":" 6","pages":" 2940-2948"},"PeriodicalIF":30.8000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A highly efficient electrolysis system enabled by direct impedance matching between a charge migration triboelectric nanogenerator and series connected electrolysers†\",\"authors\":\"Yu Deng, Qian Qin, Wencong He, Hengyu Guo and Jie Chen\",\"doi\":\"10.1039/D4EE05522E\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >As an electromechanical conversion technology, triboelectric nanogenerators (TENGs) are widely used in water electrolysis for hydrogen production. Nevertheless, the impedance mismatch between TENGs and conventional electrolysers significantly reduces energy utilization efficiency, necessitating the integration of power management circuits (PMCs) to mitigate lost energy. Herein, we propose a highly efficient electrolysis system that establishes direct impedance matching between a charge migration triboelectric nanogenerator (CM-TENG) and series-connected electrolysers (SCEs). By leveraging the charge migration of polyurethane and repositioning the tribo-material's back-electrode, the surface charge density of the CM-TENG is enhanced to 306.2 μC m<small><sup>−2</sup></small>. With systematic parameter optimization, the matched impedance of the CM-TENG is reduced to 2.5 MΩ, delivering a peak power of 451.6 mW. Furthermore, through the serpentine-connected array of electrolytic cells, the impendence of 200 SCEs is tuned to perfectly match that of the CM-TENG. Under motor-driven CM-TENG operation, this system achieves an energy utilization efficiency of 98.9%, along with a hydrogen production rate of 1851.9 μL min<small><sup>−1</sup></small> m<small><sup>−2</sup></small>, which is 7.1 times higher than what is obtained using PMCs. This work not only promotes the progress of green hydrogen production but also provides guidance for highly efficient triboelectric self-powered systems.</p>\",\"PeriodicalId\":72,\"journal\":{\"name\":\"Energy & Environmental Science\",\"volume\":\" 6\",\"pages\":\" 2940-2948\"},\"PeriodicalIF\":30.8000,\"publicationDate\":\"2025-02-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy & Environmental Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/ee/d4ee05522e\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy & Environmental Science","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ee/d4ee05522e","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

摩擦纳米发电机作为一种机电转换技术,在水电解制氢中得到了广泛的应用。然而,TENGs与传统电解槽之间的阻抗不匹配显著降低了能量利用效率,因此需要集成电源管理电路(pmc)来减少能量损失。在此,我们提出了一种高效的电解系统,该系统在电荷迁移摩擦电纳米发电机(CM-TENG)和串联电解槽(SCEs)之间建立了直接阻抗匹配。利用聚氨酯的电荷迁移和摩擦材料背电极的重新定位,CM-TENG的表面电荷密度提高到306.2 μC m-2。通过系统参数优化,CM-TENG的匹配阻抗降低到2.5 MΩ,峰值功率为451.6 mW。此外,通过电解电池的蛇形连接阵列,调整200个sce的阻抗,使其与CM-TENG的阻抗完全匹配。在电机驱动CM-TENG运行下,该系统的能量利用效率为98.9%,产氢率为1851.9 μL min-1 m-2,是PMC的7.1倍。这项工作不仅促进了绿色制氢的进展,而且为高效的摩擦电自供电系统提供了指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A highly efficient electrolysis system enabled by direct impedance matching between a charge migration triboelectric nanogenerator and series connected electrolysers†

A highly efficient electrolysis system enabled by direct impedance matching between a charge migration triboelectric nanogenerator and series connected electrolysers†

As an electromechanical conversion technology, triboelectric nanogenerators (TENGs) are widely used in water electrolysis for hydrogen production. Nevertheless, the impedance mismatch between TENGs and conventional electrolysers significantly reduces energy utilization efficiency, necessitating the integration of power management circuits (PMCs) to mitigate lost energy. Herein, we propose a highly efficient electrolysis system that establishes direct impedance matching between a charge migration triboelectric nanogenerator (CM-TENG) and series-connected electrolysers (SCEs). By leveraging the charge migration of polyurethane and repositioning the tribo-material's back-electrode, the surface charge density of the CM-TENG is enhanced to 306.2 μC m−2. With systematic parameter optimization, the matched impedance of the CM-TENG is reduced to 2.5 MΩ, delivering a peak power of 451.6 mW. Furthermore, through the serpentine-connected array of electrolytic cells, the impendence of 200 SCEs is tuned to perfectly match that of the CM-TENG. Under motor-driven CM-TENG operation, this system achieves an energy utilization efficiency of 98.9%, along with a hydrogen production rate of 1851.9 μL min−1 m−2, which is 7.1 times higher than what is obtained using PMCs. This work not only promotes the progress of green hydrogen production but also provides guidance for highly efficient triboelectric self-powered systems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Energy & Environmental Science
Energy & Environmental Science 化学-工程:化工
CiteScore
50.50
自引率
2.20%
发文量
349
审稿时长
2.2 months
期刊介绍: Energy & Environmental Science, a peer-reviewed scientific journal, publishes original research and review articles covering interdisciplinary topics in the (bio)chemical and (bio)physical sciences, as well as chemical engineering disciplines. Published monthly by the Royal Society of Chemistry (RSC), a not-for-profit publisher, Energy & Environmental Science is recognized as a leading journal. It boasts an impressive impact factor of 8.500 as of 2009, ranking 8th among 140 journals in the category "Chemistry, Multidisciplinary," second among 71 journals in "Energy & Fuels," second among 128 journals in "Engineering, Chemical," and first among 181 scientific journals in "Environmental Sciences." Energy & Environmental Science publishes various types of articles, including Research Papers (original scientific work), Review Articles, Perspectives, and Minireviews (feature review-type articles of broad interest), Communications (original scientific work of an urgent nature), Opinions (personal, often speculative viewpoints or hypotheses on current topics), and Analysis Articles (in-depth examination of energy-related issues).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信