Zhaoyong Liang , Zongxin Mo , Shuangyang Zhang , Long Chen , Danni Wang , Chaobin Hu , Li Qi
{"title":"基于扩散方程的光声层析自监督光通量校正网络。","authors":"Zhaoyong Liang , Zongxin Mo , Shuangyang Zhang , Long Chen , Danni Wang , Chaobin Hu , Li Qi","doi":"10.1016/j.pacs.2025.100684","DOIUrl":null,"url":null,"abstract":"<div><div>Deep learning (DL) shows promise in estimating the absorption coefficient distribution of biological tissue in quantitative photoacoustic tomography (QPAT) imaging, but its application is limited by a lack of ground truth for supervised network training. To address this issue, we propose a DL-based light fluence correction method that only uses the original PAT images for network training. Our self-supervised QPAT network model, which we termed SQPA-Net, introduces light fluence estimation based on diffusion equation to the loss function, and thus guides the model to learn an implicit representation of photoacoustic light transport within tissue. Simulation and small animal imaging experiments demonstrate the effectiveness and efficiency of our method. Compared to current DL-based methods and traditional iterative correction method, the proposed SQPA-Net achieves better light fluence correction results and significantly reduces the processing time.</div></div>","PeriodicalId":56025,"journal":{"name":"Photoacoustics","volume":"42 ","pages":"Article 100684"},"PeriodicalIF":6.8000,"publicationDate":"2025-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11786910/pdf/","citationCount":"0","resultStr":"{\"title\":\"Self-supervised light fluence correction network for photoacoustic tomography based on diffusion equation\",\"authors\":\"Zhaoyong Liang , Zongxin Mo , Shuangyang Zhang , Long Chen , Danni Wang , Chaobin Hu , Li Qi\",\"doi\":\"10.1016/j.pacs.2025.100684\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Deep learning (DL) shows promise in estimating the absorption coefficient distribution of biological tissue in quantitative photoacoustic tomography (QPAT) imaging, but its application is limited by a lack of ground truth for supervised network training. To address this issue, we propose a DL-based light fluence correction method that only uses the original PAT images for network training. Our self-supervised QPAT network model, which we termed SQPA-Net, introduces light fluence estimation based on diffusion equation to the loss function, and thus guides the model to learn an implicit representation of photoacoustic light transport within tissue. Simulation and small animal imaging experiments demonstrate the effectiveness and efficiency of our method. Compared to current DL-based methods and traditional iterative correction method, the proposed SQPA-Net achieves better light fluence correction results and significantly reduces the processing time.</div></div>\",\"PeriodicalId\":56025,\"journal\":{\"name\":\"Photoacoustics\",\"volume\":\"42 \",\"pages\":\"Article 100684\"},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2025-01-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11786910/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Photoacoustics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2213597925000035\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photoacoustics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2213597925000035","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Self-supervised light fluence correction network for photoacoustic tomography based on diffusion equation
Deep learning (DL) shows promise in estimating the absorption coefficient distribution of biological tissue in quantitative photoacoustic tomography (QPAT) imaging, but its application is limited by a lack of ground truth for supervised network training. To address this issue, we propose a DL-based light fluence correction method that only uses the original PAT images for network training. Our self-supervised QPAT network model, which we termed SQPA-Net, introduces light fluence estimation based on diffusion equation to the loss function, and thus guides the model to learn an implicit representation of photoacoustic light transport within tissue. Simulation and small animal imaging experiments demonstrate the effectiveness and efficiency of our method. Compared to current DL-based methods and traditional iterative correction method, the proposed SQPA-Net achieves better light fluence correction results and significantly reduces the processing time.
PhotoacousticsPhysics and Astronomy-Atomic and Molecular Physics, and Optics
CiteScore
11.40
自引率
16.50%
发文量
96
审稿时长
53 days
期刊介绍:
The open access Photoacoustics journal (PACS) aims to publish original research and review contributions in the field of photoacoustics-optoacoustics-thermoacoustics. This field utilizes acoustical and ultrasonic phenomena excited by electromagnetic radiation for the detection, visualization, and characterization of various materials and biological tissues, including living organisms.
Recent advancements in laser technologies, ultrasound detection approaches, inverse theory, and fast reconstruction algorithms have greatly supported the rapid progress in this field. The unique contrast provided by molecular absorption in photoacoustic-optoacoustic-thermoacoustic methods has allowed for addressing unmet biological and medical needs such as pre-clinical research, clinical imaging of vasculature, tissue and disease physiology, drug efficacy, surgery guidance, and therapy monitoring.
Applications of this field encompass a wide range of medical imaging and sensing applications, including cancer, vascular diseases, brain neurophysiology, ophthalmology, and diabetes. Moreover, photoacoustics-optoacoustics-thermoacoustics is a multidisciplinary field, with contributions from chemistry and nanotechnology, where novel materials such as biodegradable nanoparticles, organic dyes, targeted agents, theranostic probes, and genetically expressed markers are being actively developed.
These advanced materials have significantly improved the signal-to-noise ratio and tissue contrast in photoacoustic methods.