Robert L Read, Nathaniel Bechard, Victor Suturin, Antal Zuiderwijk, Michelle Mellenthin
{"title":"The PolyVent educational platform: An open mechanical ventilation platform for research and education.","authors":"Robert L Read, Nathaniel Bechard, Victor Suturin, Antal Zuiderwijk, Michelle Mellenthin","doi":"10.1016/j.ohx.2024.e00615","DOIUrl":null,"url":null,"abstract":"<p><p>The PolyVent is an open source mechanical ventilator meant for research and education. It prioritizes openness, modularity, repairability, and modifiability. An ESP32 microcontroller controls a proportional valve which precisely modulates pressure and flow from a mixing chamber into the airway. This chamber is fed with pressurized oxygen and medical air. Solenoid valves control both gas mixing and patient inflation. The PolyVent is controllable through a command-line interface over the serial port, a convenient point of access for researchers and instructors. The VentMon, a separate IoT-enabled spirometer, provides convenient instrumentation for classroom teaching and geodistributed research teams. A \"cake-dome\" design allows the PolyVent to operate with or without its transparent cover in place, for easy troubleshooting and instruction. An open footprint optimizes engineering change rather than compactness. The electronics are packaged into cards on a standardized backplane, allowing one to extend functionality through the addition of new cards. The VentOS open source software that drives the machine makes it a universal and modifiable research software platform. It is intended to be the medical gas production heart of an open source human respiration research and education ecosystem, and aims to be the starting point for open source medical ventilator designs.</p>","PeriodicalId":37503,"journal":{"name":"HardwareX","volume":"21 ","pages":"e00615"},"PeriodicalIF":2.0000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11783062/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"HardwareX","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.ohx.2024.e00615","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
The PolyVent educational platform: An open mechanical ventilation platform for research and education.
The PolyVent is an open source mechanical ventilator meant for research and education. It prioritizes openness, modularity, repairability, and modifiability. An ESP32 microcontroller controls a proportional valve which precisely modulates pressure and flow from a mixing chamber into the airway. This chamber is fed with pressurized oxygen and medical air. Solenoid valves control both gas mixing and patient inflation. The PolyVent is controllable through a command-line interface over the serial port, a convenient point of access for researchers and instructors. The VentMon, a separate IoT-enabled spirometer, provides convenient instrumentation for classroom teaching and geodistributed research teams. A "cake-dome" design allows the PolyVent to operate with or without its transparent cover in place, for easy troubleshooting and instruction. An open footprint optimizes engineering change rather than compactness. The electronics are packaged into cards on a standardized backplane, allowing one to extend functionality through the addition of new cards. The VentOS open source software that drives the machine makes it a universal and modifiable research software platform. It is intended to be the medical gas production heart of an open source human respiration research and education ecosystem, and aims to be the starting point for open source medical ventilator designs.
HardwareXEngineering-Industrial and Manufacturing Engineering
CiteScore
4.10
自引率
18.20%
发文量
124
审稿时长
24 weeks
期刊介绍:
HardwareX is an open access journal established to promote free and open source designing, building and customizing of scientific infrastructure (hardware). HardwareX aims to recognize researchers for the time and effort in developing scientific infrastructure while providing end-users with sufficient information to replicate and validate the advances presented. HardwareX is open to input from all scientific, technological and medical disciplines. Scientific infrastructure will be interpreted in the broadest sense. Including hardware modifications to existing infrastructure, sensors and tools that perform measurements and other functions outside of the traditional lab setting (such as wearables, air/water quality sensors, and low cost alternatives to existing tools), and the creation of wholly new tools for either standard or novel laboratory tasks. Authors are encouraged to submit hardware developments that address all aspects of science, not only the final measurement, for example, enhancements in sample preparation and handling, user safety, and quality control. The use of distributed digital manufacturing strategies (e.g. 3-D printing) is encouraged. All designs must be submitted under an open hardware license.