{"title":"A low-cost open-source 3D-printed mouse cradle suspension system for awake or anaesthetised 1H/31P magnetic resonance spectroscopy","authors":"Saba Molhemi, Leif Østergaard, Brian Hansen","doi":"10.1016/j.ohx.2024.e00616","DOIUrl":null,"url":null,"abstract":"<div><div>Awake mouse MRI and spectroscopy (MRS) are valuable techniques for studying biological questions without the confounding effects of anaesthesia. Currently, no off-the-shelf solution exists for awake mouse MRI/S. To address this, we present a Mouse Cradle Suspension System (MCSS) for awake mouse MRI/S. Our design is freely available and offers a low-cost 3D-printed setup compatible with a Bruker Biospec 94/20 scanner and commercially available <span><math><msup><mrow></mrow><mrow><mn>1</mn></mrow></msup></math></span>H/<sup>31</sup>P surface- and volume-coils, such as coils from Bruker Biospin (T20025V3) and Rapid (O-XL-HL-094). While the focus here is measurements in awake mouse brain, the coils and the presented setup is suitable for both mouse and rat brain, and studies of mouse body organs. Moreover, the design is easily modifiable to suit other applications and hardware configurations. The MCSS reduces gradient-induced coil vibrations and supports cross-coil setups. It features an inner and outer rail system for easy insertion of the coil and customized mouse cradle into the scanner. The cradle is suitable for both anaesthetized and awake mouse scans and existing habituation protocols for awake mouse MRI/S. This MCSS design ensures a smooth workflow for awake mouse MRI/S. The cost is approximately 200€, achieved using 3D-printed and off-the-shelf components.</div></div>","PeriodicalId":37503,"journal":{"name":"HardwareX","volume":"21 ","pages":"Article e00616"},"PeriodicalIF":2.0000,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11783022/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"HardwareX","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S246806722400110X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
A low-cost open-source 3D-printed mouse cradle suspension system for awake or anaesthetised 1H/31P magnetic resonance spectroscopy
Awake mouse MRI and spectroscopy (MRS) are valuable techniques for studying biological questions without the confounding effects of anaesthesia. Currently, no off-the-shelf solution exists for awake mouse MRI/S. To address this, we present a Mouse Cradle Suspension System (MCSS) for awake mouse MRI/S. Our design is freely available and offers a low-cost 3D-printed setup compatible with a Bruker Biospec 94/20 scanner and commercially available H/31P surface- and volume-coils, such as coils from Bruker Biospin (T20025V3) and Rapid (O-XL-HL-094). While the focus here is measurements in awake mouse brain, the coils and the presented setup is suitable for both mouse and rat brain, and studies of mouse body organs. Moreover, the design is easily modifiable to suit other applications and hardware configurations. The MCSS reduces gradient-induced coil vibrations and supports cross-coil setups. It features an inner and outer rail system for easy insertion of the coil and customized mouse cradle into the scanner. The cradle is suitable for both anaesthetized and awake mouse scans and existing habituation protocols for awake mouse MRI/S. This MCSS design ensures a smooth workflow for awake mouse MRI/S. The cost is approximately 200€, achieved using 3D-printed and off-the-shelf components.
HardwareXEngineering-Industrial and Manufacturing Engineering
CiteScore
4.10
自引率
18.20%
发文量
124
审稿时长
24 weeks
期刊介绍:
HardwareX is an open access journal established to promote free and open source designing, building and customizing of scientific infrastructure (hardware). HardwareX aims to recognize researchers for the time and effort in developing scientific infrastructure while providing end-users with sufficient information to replicate and validate the advances presented. HardwareX is open to input from all scientific, technological and medical disciplines. Scientific infrastructure will be interpreted in the broadest sense. Including hardware modifications to existing infrastructure, sensors and tools that perform measurements and other functions outside of the traditional lab setting (such as wearables, air/water quality sensors, and low cost alternatives to existing tools), and the creation of wholly new tools for either standard or novel laboratory tasks. Authors are encouraged to submit hardware developments that address all aspects of science, not only the final measurement, for example, enhancements in sample preparation and handling, user safety, and quality control. The use of distributed digital manufacturing strategies (e.g. 3-D printing) is encouraged. All designs must be submitted under an open hardware license.