基于物理的实时声全息生成对抗网络。

IF 4.1 2区 物理与天体物理 Q1 ACOUSTICS
Qingyi Lu , Chengxi Zhong , Hu Su , Song Liu
{"title":"基于物理的实时声全息生成对抗网络。","authors":"Qingyi Lu ,&nbsp;Chengxi Zhong ,&nbsp;Hu Su ,&nbsp;Song Liu","doi":"10.1016/j.ultras.2025.107583","DOIUrl":null,"url":null,"abstract":"<div><div>Acoustic holography (AH) encodes the acoustic fields in high dimensions into two-dimensional holograms without information loss. Phase-only holography (POH) modulates only the phase profiles of the encoded hologram, establishing its superiority over alternative modulation schedules due to its information volume and storage efficiency. Moreover, POH implemented by a phased array of transducers (PAT) facilitates active and dynamic manipulation by independently modulating the phase of each transducer. However, existing algorithms for POH calculation suffer from a deficiency in terms of high fidelity and good real-time performance. Thus, a deep learning algorithm reinforced by the physical model, i.e. Angular Spectrum Method (ASM), is proposed to learn the inverse physical mapping from the target field to the source POH. This method comprises a generative adversarial network (GAN) evaluated by soft label, which is referred to as soft-GAN. Furthermore, to avoid the intrinsic limitation of neural networks on high-frequency features, a Y-Net structure is developed with two decoder branches in frequency and spatial domain, respectively. The proposed method achieves the reconstruction performance with a state-of-the-art (SOTA) Peak Signal-to-Noise Ratio (PSNR) of 24.05 dB. Experiment results demonstrated that the POH calculated by the proposed method enables accurate and real-time hologram reconstruction, showing enormous potential for applications.</div></div>","PeriodicalId":23522,"journal":{"name":"Ultrasonics","volume":"149 ","pages":"Article 107583"},"PeriodicalIF":4.1000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Physics-based generative adversarial network for real-time acoustic holography\",\"authors\":\"Qingyi Lu ,&nbsp;Chengxi Zhong ,&nbsp;Hu Su ,&nbsp;Song Liu\",\"doi\":\"10.1016/j.ultras.2025.107583\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Acoustic holography (AH) encodes the acoustic fields in high dimensions into two-dimensional holograms without information loss. Phase-only holography (POH) modulates only the phase profiles of the encoded hologram, establishing its superiority over alternative modulation schedules due to its information volume and storage efficiency. Moreover, POH implemented by a phased array of transducers (PAT) facilitates active and dynamic manipulation by independently modulating the phase of each transducer. However, existing algorithms for POH calculation suffer from a deficiency in terms of high fidelity and good real-time performance. Thus, a deep learning algorithm reinforced by the physical model, i.e. Angular Spectrum Method (ASM), is proposed to learn the inverse physical mapping from the target field to the source POH. This method comprises a generative adversarial network (GAN) evaluated by soft label, which is referred to as soft-GAN. Furthermore, to avoid the intrinsic limitation of neural networks on high-frequency features, a Y-Net structure is developed with two decoder branches in frequency and spatial domain, respectively. The proposed method achieves the reconstruction performance with a state-of-the-art (SOTA) Peak Signal-to-Noise Ratio (PSNR) of 24.05 dB. Experiment results demonstrated that the POH calculated by the proposed method enables accurate and real-time hologram reconstruction, showing enormous potential for applications.</div></div>\",\"PeriodicalId\":23522,\"journal\":{\"name\":\"Ultrasonics\",\"volume\":\"149 \",\"pages\":\"Article 107583\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2025-01-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ultrasonics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0041624X25000204\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ultrasonics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0041624X25000204","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

摘要

声波全息术(AH)将高维声场编码成二维全息图而不丢失信息。纯相位全息(POH)仅调制编码全息图的相位轮廓,由于其信息量和存储效率,确立了其优于其他调制计划的优势。此外,由相控阵换能器(PAT)实现的POH通过独立调制每个换能器的相位来促进主动和动态操作。然而,现有的POH计算算法在保真度和实时性方面存在不足。为此,提出了一种物理模型强化的深度学习算法,即角谱法(ASM)来学习目标场到源POH的逆物理映射。该方法包括一个由软标签评估的生成式对抗网络(GAN),称为软GAN。此外,为了避免神经网络在高频特征上的固有局限性,提出了一种Y-Net结构,在频率域和空间域分别具有两个解码器分支。该方法实现了最先进(SOTA)峰值信噪比(PSNR)为24.05 dB的重构性能。实验结果表明,该方法计算的POH能够实现精确、实时的全息图重建,具有巨大的应用潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Physics-based generative adversarial network for real-time acoustic holography

Physics-based generative adversarial network for real-time acoustic holography
Acoustic holography (AH) encodes the acoustic fields in high dimensions into two-dimensional holograms without information loss. Phase-only holography (POH) modulates only the phase profiles of the encoded hologram, establishing its superiority over alternative modulation schedules due to its information volume and storage efficiency. Moreover, POH implemented by a phased array of transducers (PAT) facilitates active and dynamic manipulation by independently modulating the phase of each transducer. However, existing algorithms for POH calculation suffer from a deficiency in terms of high fidelity and good real-time performance. Thus, a deep learning algorithm reinforced by the physical model, i.e. Angular Spectrum Method (ASM), is proposed to learn the inverse physical mapping from the target field to the source POH. This method comprises a generative adversarial network (GAN) evaluated by soft label, which is referred to as soft-GAN. Furthermore, to avoid the intrinsic limitation of neural networks on high-frequency features, a Y-Net structure is developed with two decoder branches in frequency and spatial domain, respectively. The proposed method achieves the reconstruction performance with a state-of-the-art (SOTA) Peak Signal-to-Noise Ratio (PSNR) of 24.05 dB. Experiment results demonstrated that the POH calculated by the proposed method enables accurate and real-time hologram reconstruction, showing enormous potential for applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Ultrasonics
Ultrasonics 医学-核医学
CiteScore
7.60
自引率
19.00%
发文量
186
审稿时长
3.9 months
期刊介绍: Ultrasonics is the only internationally established journal which covers the entire field of ultrasound research and technology and all its many applications. Ultrasonics contains a variety of sections to keep readers fully informed and up-to-date on the whole spectrum of research and development throughout the world. Ultrasonics publishes papers of exceptional quality and of relevance to both academia and industry. Manuscripts in which ultrasonics is a central issue and not simply an incidental tool or minor issue, are welcomed. As well as top quality original research papers and review articles by world renowned experts, Ultrasonics also regularly features short communications, a calendar of forthcoming events and special issues dedicated to topical subjects.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信