从单碱基分辨率的序列中表征蛋白质- rna相互作用的深度学习模型。

IF 6.7 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Xilin Shen, Yayan Hou, Xueer Wang, Chunyong Zhang, Jilei Liu, Hongru Shen, Wei Wang, Yichen Yang, Meng Yang, Yang Li, Jin Zhang, Yan Sun, Kexin Chen, Lei Shi, Xiangchun Li
{"title":"从单碱基分辨率的序列中表征蛋白质- rna相互作用的深度学习模型。","authors":"Xilin Shen, Yayan Hou, Xueer Wang, Chunyong Zhang, Jilei Liu, Hongru Shen, Wei Wang, Yichen Yang, Meng Yang, Yang Li, Jin Zhang, Yan Sun, Kexin Chen, Lei Shi, Xiangchun Li","doi":"10.1016/j.patter.2024.101150","DOIUrl":null,"url":null,"abstract":"<p><p>Protein-RNA interactions play pivotal roles in regulating transcription, translation, and RNA metabolism. Characterizing these interactions offers key insights into RNA dysregulation mechanisms. Here, we introduce Reformer, a deep learning model that predicts protein-RNA binding affinity from sequence data. Trained on 225 enhanced cross-linking and immunoprecipitation sequencing (eCLIP-seq) datasets encompassing 155 RNA-binding proteins across three cell lines, Reformer achieves high accuracy in predicting binding affinity at single-base resolution. The model uncovers binding motifs that are often undetectable through traditional eCLIP-seq methods. Notably, the motifs learned by Reformer are shown to correlate with RNA processing functions. Validation via electrophoretic mobility shift assays confirms the model's precision in quantifying the impact of mutations on RNA regulation. In summary, Reformer improves the resolution of RNA-protein interaction predictions and aids in prioritizing mutations that influence RNA regulation.</p>","PeriodicalId":36242,"journal":{"name":"Patterns","volume":"6 1","pages":"101150"},"PeriodicalIF":6.7000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11783876/pdf/","citationCount":"0","resultStr":"{\"title\":\"A deep learning model for characterizing protein-RNA interactions from sequences at single-base resolution.\",\"authors\":\"Xilin Shen, Yayan Hou, Xueer Wang, Chunyong Zhang, Jilei Liu, Hongru Shen, Wei Wang, Yichen Yang, Meng Yang, Yang Li, Jin Zhang, Yan Sun, Kexin Chen, Lei Shi, Xiangchun Li\",\"doi\":\"10.1016/j.patter.2024.101150\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Protein-RNA interactions play pivotal roles in regulating transcription, translation, and RNA metabolism. Characterizing these interactions offers key insights into RNA dysregulation mechanisms. Here, we introduce Reformer, a deep learning model that predicts protein-RNA binding affinity from sequence data. Trained on 225 enhanced cross-linking and immunoprecipitation sequencing (eCLIP-seq) datasets encompassing 155 RNA-binding proteins across three cell lines, Reformer achieves high accuracy in predicting binding affinity at single-base resolution. The model uncovers binding motifs that are often undetectable through traditional eCLIP-seq methods. Notably, the motifs learned by Reformer are shown to correlate with RNA processing functions. Validation via electrophoretic mobility shift assays confirms the model's precision in quantifying the impact of mutations on RNA regulation. In summary, Reformer improves the resolution of RNA-protein interaction predictions and aids in prioritizing mutations that influence RNA regulation.</p>\",\"PeriodicalId\":36242,\"journal\":{\"name\":\"Patterns\",\"volume\":\"6 1\",\"pages\":\"101150\"},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2025-01-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11783876/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Patterns\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.patter.2024.101150\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Patterns","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.patter.2024.101150","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

蛋白质-RNA相互作用在调节转录、翻译和RNA代谢中起着关键作用。表征这些相互作用提供了RNA失调机制的关键见解。在这里,我们介绍了Reformer,这是一个深度学习模型,可以根据序列数据预测蛋白质- rna的结合亲和力。Reformer在225个增强交联和免疫沉淀测序(ecip -seq)数据集上训练,包括3个细胞系中的155个rna结合蛋白,在单碱基分辨率下预测结合亲和力方面具有很高的准确性。该模型揭示了通过传统的eCLIP-seq方法通常无法检测到的结合基序。值得注意的是,Reformer学习的基序被证明与RNA加工功能相关。通过电泳迁移位移测定验证了该模型在量化突变对RNA调控的影响方面的准确性。总之,Reformer提高了RNA-蛋白相互作用预测的分辨率,并有助于确定影响RNA调控的突变的优先级。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A deep learning model for characterizing protein-RNA interactions from sequences at single-base resolution.

Protein-RNA interactions play pivotal roles in regulating transcription, translation, and RNA metabolism. Characterizing these interactions offers key insights into RNA dysregulation mechanisms. Here, we introduce Reformer, a deep learning model that predicts protein-RNA binding affinity from sequence data. Trained on 225 enhanced cross-linking and immunoprecipitation sequencing (eCLIP-seq) datasets encompassing 155 RNA-binding proteins across three cell lines, Reformer achieves high accuracy in predicting binding affinity at single-base resolution. The model uncovers binding motifs that are often undetectable through traditional eCLIP-seq methods. Notably, the motifs learned by Reformer are shown to correlate with RNA processing functions. Validation via electrophoretic mobility shift assays confirms the model's precision in quantifying the impact of mutations on RNA regulation. In summary, Reformer improves the resolution of RNA-protein interaction predictions and aids in prioritizing mutations that influence RNA regulation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Patterns
Patterns Decision Sciences-Decision Sciences (all)
CiteScore
10.60
自引率
4.60%
发文量
153
审稿时长
19 weeks
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信