Libo Qin, Qiguang Chen, Yuhang Zhou, Zhi Chen, Yinghui Li, Lizi Liao, Min Li, Wanxiang Che, Philip S Yu
{"title":"多语种大型语言模型综述。","authors":"Libo Qin, Qiguang Chen, Yuhang Zhou, Zhi Chen, Yinghui Li, Lizi Liao, Min Li, Wanxiang Che, Philip S Yu","doi":"10.1016/j.patter.2024.101118","DOIUrl":null,"url":null,"abstract":"<p><p>Multilingual large language models (MLLMs) leverage advanced large language models to process and respond to queries across multiple languages, achieving significant success in polyglot tasks. Despite these breakthroughs, a comprehensive survey summarizing existing approaches and recent developments remains absent. To this end, this paper presents a unified and thorough review of the field, highlighting recent progress and emerging trends in MLLM research. The contributions of this paper are as follows. (1) Extensive survey: to our knowledge, this is the pioneering thorough review of multilingual alignment in MLLMs. (2) Unified taxonomy: we provide a unified framework to summarize the current progress in MLLMs. (3) Emerging frontiers: key emerging frontiers are identified, alongside a discussion of associated challenges. (4) Abundant resources: we collect abundant open-source resources, including relevant papers, data corpora, and leaderboards. We hope our work can provide the community quick access and spur breakthrough research in MLLMs.</p>","PeriodicalId":36242,"journal":{"name":"Patterns","volume":"6 1","pages":"101118"},"PeriodicalIF":6.7000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11783891/pdf/","citationCount":"0","resultStr":"{\"title\":\"A survey of multilingual large language models.\",\"authors\":\"Libo Qin, Qiguang Chen, Yuhang Zhou, Zhi Chen, Yinghui Li, Lizi Liao, Min Li, Wanxiang Che, Philip S Yu\",\"doi\":\"10.1016/j.patter.2024.101118\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Multilingual large language models (MLLMs) leverage advanced large language models to process and respond to queries across multiple languages, achieving significant success in polyglot tasks. Despite these breakthroughs, a comprehensive survey summarizing existing approaches and recent developments remains absent. To this end, this paper presents a unified and thorough review of the field, highlighting recent progress and emerging trends in MLLM research. The contributions of this paper are as follows. (1) Extensive survey: to our knowledge, this is the pioneering thorough review of multilingual alignment in MLLMs. (2) Unified taxonomy: we provide a unified framework to summarize the current progress in MLLMs. (3) Emerging frontiers: key emerging frontiers are identified, alongside a discussion of associated challenges. (4) Abundant resources: we collect abundant open-source resources, including relevant papers, data corpora, and leaderboards. We hope our work can provide the community quick access and spur breakthrough research in MLLMs.</p>\",\"PeriodicalId\":36242,\"journal\":{\"name\":\"Patterns\",\"volume\":\"6 1\",\"pages\":\"101118\"},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2025-01-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11783891/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Patterns\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.patter.2024.101118\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Patterns","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.patter.2024.101118","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Multilingual large language models (MLLMs) leverage advanced large language models to process and respond to queries across multiple languages, achieving significant success in polyglot tasks. Despite these breakthroughs, a comprehensive survey summarizing existing approaches and recent developments remains absent. To this end, this paper presents a unified and thorough review of the field, highlighting recent progress and emerging trends in MLLM research. The contributions of this paper are as follows. (1) Extensive survey: to our knowledge, this is the pioneering thorough review of multilingual alignment in MLLMs. (2) Unified taxonomy: we provide a unified framework to summarize the current progress in MLLMs. (3) Emerging frontiers: key emerging frontiers are identified, alongside a discussion of associated challenges. (4) Abundant resources: we collect abundant open-source resources, including relevant papers, data corpora, and leaderboards. We hope our work can provide the community quick access and spur breakthrough research in MLLMs.