含铜纳米颗粒的多样性及其对植物生长发育的影响

IF 5.7 2区 生物学 Q1 PLANT SCIENCES
Plant Physiology and Biochemistry Pub Date : 2025-03-01 Epub Date: 2025-01-29 DOI:10.1016/j.plaphy.2025.109575
A I Perfileva, B G Sukhov, T V Kon'kova, E I Strekalovskaya, K V Krutovsky
{"title":"含铜纳米颗粒的多样性及其对植物生长发育的影响","authors":"A I Perfileva, B G Sukhov, T V Kon'kova, E I Strekalovskaya, K V Krutovsky","doi":"10.1016/j.plaphy.2025.109575","DOIUrl":null,"url":null,"abstract":"<p><p>Copper (Cu) is an important microelement for plants, but in high concentrations it can be toxic. Cu-containing nanoparticles (Cu NPs) are less toxic, their use for plants is safer, more effective and economical than the use of Cu salts. This review presents detailed information on the chemical diversity of Cu NPs and various methods of their synthesis. The mechanisms of the effect of Cu NPs on plants are described in detail, and examples of research in this area are given. The main effects of Cu NPs on plants are reviewed including on their growth and development (organogenesis, mitosis, accumulation of biomass), biochemical processes (intensity of photosynthesis, antioxidant status and intensity of lipid peroxidation processes), gene expression, plant resistance to abiotic and biotic stress factors. The prospects of using Cu NPs as mineral fertilizers are shown by describing their stimulation effects on seed germination, plant growth and development, and on increase of plant resistance to stress factors. The protective effect of Cu NPs is often explained by their antioxidant activity. At the same time, there are a number of studies demonstrating the negative impact of Cu NPs on plant growth, development and the intensity of photosynthesis, depending on their concentration. Cu NPs have a pronounced antibacterial effect on bacterial phytopathogens of cultivated plants, as well as on a number of phytopathogenic fungi and nematodes. Thus, Cu NPs are promising agents for agriculture, while their effect on plants requires careful selection of optimal concentrations and comprehensive studies to avoid a toxic effect.</p>","PeriodicalId":20234,"journal":{"name":"Plant Physiology and Biochemistry","volume":"220 ","pages":"109575"},"PeriodicalIF":5.7000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Diversity of copper-containing nanoparticles and their influence on plant growth and development.\",\"authors\":\"A I Perfileva, B G Sukhov, T V Kon'kova, E I Strekalovskaya, K V Krutovsky\",\"doi\":\"10.1016/j.plaphy.2025.109575\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Copper (Cu) is an important microelement for plants, but in high concentrations it can be toxic. Cu-containing nanoparticles (Cu NPs) are less toxic, their use for plants is safer, more effective and economical than the use of Cu salts. This review presents detailed information on the chemical diversity of Cu NPs and various methods of their synthesis. The mechanisms of the effect of Cu NPs on plants are described in detail, and examples of research in this area are given. The main effects of Cu NPs on plants are reviewed including on their growth and development (organogenesis, mitosis, accumulation of biomass), biochemical processes (intensity of photosynthesis, antioxidant status and intensity of lipid peroxidation processes), gene expression, plant resistance to abiotic and biotic stress factors. The prospects of using Cu NPs as mineral fertilizers are shown by describing their stimulation effects on seed germination, plant growth and development, and on increase of plant resistance to stress factors. The protective effect of Cu NPs is often explained by their antioxidant activity. At the same time, there are a number of studies demonstrating the negative impact of Cu NPs on plant growth, development and the intensity of photosynthesis, depending on their concentration. Cu NPs have a pronounced antibacterial effect on bacterial phytopathogens of cultivated plants, as well as on a number of phytopathogenic fungi and nematodes. Thus, Cu NPs are promising agents for agriculture, while their effect on plants requires careful selection of optimal concentrations and comprehensive studies to avoid a toxic effect.</p>\",\"PeriodicalId\":20234,\"journal\":{\"name\":\"Plant Physiology and Biochemistry\",\"volume\":\"220 \",\"pages\":\"109575\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2025-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Physiology and Biochemistry\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.plaphy.2025.109575\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/29 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Physiology and Biochemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.plaphy.2025.109575","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/29 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

铜(Cu)是一种重要的植物微量元素,但在高浓度它可能是有毒的。含铜纳米颗粒(Cu NPs)毒性较小,在植物中使用比使用铜盐更安全、更有效和更经济。本文详细介绍了铜纳米粒子的化学多样性及其各种合成方法。详细介绍了Cu NPs对植物的作用机理,并列举了该领域的研究实例。综述了铜NPs对植物生长发育(器官发生、有丝分裂、生物量积累)、生物化学过程(光合作用强度、抗氧化状态和脂质过氧化过程强度)、基因表达、植物对非生物和生物胁迫因子的抗性等方面的主要影响。通过对种子萌发、植物生长发育、提高植物抗逆性等方面的刺激作用,展望了铜氮肥作为矿质肥料的应用前景。铜NPs的保护作用通常由其抗氧化活性来解释。与此同时,也有大量研究表明,Cu NPs对植物生长发育和光合作用强度的负面影响取决于其浓度。铜NPs对栽培植物的细菌性植物病原体以及一些植物病原真菌和线虫具有明显的抗菌作用。因此,铜NPs是很有前景的农业药剂,但其对植物的影响需要仔细选择最佳浓度和全面的研究,以避免毒性作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Diversity of copper-containing nanoparticles and their influence on plant growth and development.

Copper (Cu) is an important microelement for plants, but in high concentrations it can be toxic. Cu-containing nanoparticles (Cu NPs) are less toxic, their use for plants is safer, more effective and economical than the use of Cu salts. This review presents detailed information on the chemical diversity of Cu NPs and various methods of their synthesis. The mechanisms of the effect of Cu NPs on plants are described in detail, and examples of research in this area are given. The main effects of Cu NPs on plants are reviewed including on their growth and development (organogenesis, mitosis, accumulation of biomass), biochemical processes (intensity of photosynthesis, antioxidant status and intensity of lipid peroxidation processes), gene expression, plant resistance to abiotic and biotic stress factors. The prospects of using Cu NPs as mineral fertilizers are shown by describing their stimulation effects on seed germination, plant growth and development, and on increase of plant resistance to stress factors. The protective effect of Cu NPs is often explained by their antioxidant activity. At the same time, there are a number of studies demonstrating the negative impact of Cu NPs on plant growth, development and the intensity of photosynthesis, depending on their concentration. Cu NPs have a pronounced antibacterial effect on bacterial phytopathogens of cultivated plants, as well as on a number of phytopathogenic fungi and nematodes. Thus, Cu NPs are promising agents for agriculture, while their effect on plants requires careful selection of optimal concentrations and comprehensive studies to avoid a toxic effect.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Plant Physiology and Biochemistry
Plant Physiology and Biochemistry 生物-植物科学
CiteScore
11.10
自引率
3.10%
发文量
410
审稿时长
33 days
期刊介绍: Plant Physiology and Biochemistry publishes original theoretical, experimental and technical contributions in the various fields of plant physiology (biochemistry, physiology, structure, genetics, plant-microbe interactions, etc.) at diverse levels of integration (molecular, subcellular, cellular, organ, whole plant, environmental). Opinions expressed in the journal are the sole responsibility of the authors and publication does not imply the editors'' agreement. Manuscripts describing molecular-genetic and/or gene expression data that are not integrated with biochemical analysis and/or actual measurements of plant physiological processes are not suitable for PPB. Also "Omics" studies (transcriptomics, proteomics, metabolomics, etc.) reporting descriptive analysis without an element of functional validation assays, will not be considered. Similarly, applied agronomic or phytochemical studies that generate no new, fundamental insights in plant physiological and/or biochemical processes are not suitable for publication in PPB. Plant Physiology and Biochemistry publishes several types of articles: Reviews, Papers and Short Papers. Articles for Reviews are either invited by the editor or proposed by the authors for the editor''s prior agreement. Reviews should not exceed 40 typewritten pages and Short Papers no more than approximately 8 typewritten pages. The fundamental character of Plant Physiology and Biochemistry remains that of a journal for original results.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信