鞘氨醇激酶1抑制加重血管平滑肌细胞钙化。

IF 2.9 4区 医学 Q2 PHYSIOLOGY
Mehdi Razazian, Sheyda Bahiraii, Isratul Jannat, Adéla Tiffner, Georg Beilhack, Bodo Levkau, Jakob Voelkl, Ioana Alesutan
{"title":"鞘氨醇激酶1抑制加重血管平滑肌细胞钙化。","authors":"Mehdi Razazian, Sheyda Bahiraii, Isratul Jannat, Adéla Tiffner, Georg Beilhack, Bodo Levkau, Jakob Voelkl, Ioana Alesutan","doi":"10.1007/s00424-025-03068-6","DOIUrl":null,"url":null,"abstract":"<p><p>Medial vascular calcification is common in chronic kidney disease patients and linked to hyperphosphatemia. Upon phosphate exposure, intricate signaling events orchestrate pro-calcific effects in the vasculature mediated by vascular smooth muscle cells (VSMCs). Sphingosine kinase 1 (SPHK1) produces sphingosine-1-phosphate (S1P) and is associated with complex effects in the vascular system. The present study investigated a possible involvement of SPHK1 in VSMC calcification. Experiments were performed in primary human aortic VSMCs under pro-calcific conditions, with pharmacological inhibition or knockdown of SPHK1 or SPNS2 (a lysolipid transporter involved in cellular S1P export), as well as in Sphk1-deficient and wild-type mice treated with cholecalciferol. In VSMCs, SPHK1 expression was up-regulated by pro-calcific conditions. Calcification medium up-regulated osteogenic marker mRNA expression and activity as well as calcification of VSMCs, effects significantly augmented by co-treatment with the SPHK1 inhibitor SK1-IN-1. SK1-IN-1 alone was sufficient to up-regulate osteogenic signaling in VSMCs during control conditions. Similarly, the SPHK1 inhibitor PF-543 and SPHK1 knockdown up-regulated osteogenic signaling in VSMCs and aggravated VSMC calcification. In contrast, co-treatment with the SPNS2 inhibitor SLF1081851 suppressed osteogenic signaling and calcification of VSMCs, effects abolished by silencing of SPHK1. In addition, Sphk1 deficiency aggravated vascular calcification and aortic osteogenic marker expression in mice after cholecalciferol overload. In conclusion, SPHK1 inhibition, knockdown, or deficiency aggravates vascular pro-calcific signaling and calcification. The reduced calcification after inhibition of S1P export suggests a possible involvement of intracellular S1P, but further studies are required to elucidate the complex roles of SPHKs and S1P signaling in calcifying VSMCs.</p>","PeriodicalId":19954,"journal":{"name":"Pflugers Archiv : European journal of physiology","volume":" ","pages":"815-826"},"PeriodicalIF":2.9000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12092484/pdf/","citationCount":"0","resultStr":"{\"title\":\"Sphingosine kinase 1 inhibition aggravates vascular smooth muscle cell calcification.\",\"authors\":\"Mehdi Razazian, Sheyda Bahiraii, Isratul Jannat, Adéla Tiffner, Georg Beilhack, Bodo Levkau, Jakob Voelkl, Ioana Alesutan\",\"doi\":\"10.1007/s00424-025-03068-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Medial vascular calcification is common in chronic kidney disease patients and linked to hyperphosphatemia. Upon phosphate exposure, intricate signaling events orchestrate pro-calcific effects in the vasculature mediated by vascular smooth muscle cells (VSMCs). Sphingosine kinase 1 (SPHK1) produces sphingosine-1-phosphate (S1P) and is associated with complex effects in the vascular system. The present study investigated a possible involvement of SPHK1 in VSMC calcification. Experiments were performed in primary human aortic VSMCs under pro-calcific conditions, with pharmacological inhibition or knockdown of SPHK1 or SPNS2 (a lysolipid transporter involved in cellular S1P export), as well as in Sphk1-deficient and wild-type mice treated with cholecalciferol. In VSMCs, SPHK1 expression was up-regulated by pro-calcific conditions. Calcification medium up-regulated osteogenic marker mRNA expression and activity as well as calcification of VSMCs, effects significantly augmented by co-treatment with the SPHK1 inhibitor SK1-IN-1. SK1-IN-1 alone was sufficient to up-regulate osteogenic signaling in VSMCs during control conditions. Similarly, the SPHK1 inhibitor PF-543 and SPHK1 knockdown up-regulated osteogenic signaling in VSMCs and aggravated VSMC calcification. In contrast, co-treatment with the SPNS2 inhibitor SLF1081851 suppressed osteogenic signaling and calcification of VSMCs, effects abolished by silencing of SPHK1. In addition, Sphk1 deficiency aggravated vascular calcification and aortic osteogenic marker expression in mice after cholecalciferol overload. In conclusion, SPHK1 inhibition, knockdown, or deficiency aggravates vascular pro-calcific signaling and calcification. The reduced calcification after inhibition of S1P export suggests a possible involvement of intracellular S1P, but further studies are required to elucidate the complex roles of SPHKs and S1P signaling in calcifying VSMCs.</p>\",\"PeriodicalId\":19954,\"journal\":{\"name\":\"Pflugers Archiv : European journal of physiology\",\"volume\":\" \",\"pages\":\"815-826\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12092484/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pflugers Archiv : European journal of physiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s00424-025-03068-6\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/2/3 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pflugers Archiv : European journal of physiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00424-025-03068-6","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/3 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

内侧血管钙化在慢性肾病患者中很常见,并与高磷血症有关。在磷酸盐暴露后,复杂的信号事件协调了血管平滑肌细胞(VSMCs)介导的促钙化作用。鞘氨醇激酶1 (SPHK1)产生鞘氨醇-1-磷酸(S1P),并在血管系统中具有复杂的作用。本研究探讨了SPHK1可能参与VSMC钙化。实验在促钙化条件下,通过药理抑制或敲低SPHK1或SPNS2(一种参与细胞S1P输出的溶脂转运蛋白),以及用胆钙化醇处理的SPHK1缺陷小鼠和野生型小鼠进行。在VSMCs中,SPHK1的表达在促钙化条件下上调。钙化培养基上调成骨标志物mRNA的表达和活性,以及VSMCs的钙化,与SPHK1抑制剂SK1-IN-1共同处理显著增强了这一作用。在对照条件下,仅SK1-IN-1就足以上调VSMCs的成骨信号。同样,SPHK1抑制剂PF-543和SPHK1敲低上调VSMC中的成骨信号,并加剧VSMC的钙化。相比之下,与SPNS2抑制剂SLF1081851联合治疗可抑制成骨信号传导和VSMCs的钙化,这种作用可通过沉默SPHK1而消除。此外,Sphk1缺乏加剧了胆钙化醇超载后小鼠血管钙化和主动脉成骨标志物的表达。总之,SPHK1抑制、敲低或缺乏可加重血管促钙化信号和钙化。抑制S1P输出后的钙化减少表明细胞内S1P可能参与其中,但需要进一步的研究来阐明SPHKs和S1P信号在钙化VSMCs中的复杂作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sphingosine kinase 1 inhibition aggravates vascular smooth muscle cell calcification.

Medial vascular calcification is common in chronic kidney disease patients and linked to hyperphosphatemia. Upon phosphate exposure, intricate signaling events orchestrate pro-calcific effects in the vasculature mediated by vascular smooth muscle cells (VSMCs). Sphingosine kinase 1 (SPHK1) produces sphingosine-1-phosphate (S1P) and is associated with complex effects in the vascular system. The present study investigated a possible involvement of SPHK1 in VSMC calcification. Experiments were performed in primary human aortic VSMCs under pro-calcific conditions, with pharmacological inhibition or knockdown of SPHK1 or SPNS2 (a lysolipid transporter involved in cellular S1P export), as well as in Sphk1-deficient and wild-type mice treated with cholecalciferol. In VSMCs, SPHK1 expression was up-regulated by pro-calcific conditions. Calcification medium up-regulated osteogenic marker mRNA expression and activity as well as calcification of VSMCs, effects significantly augmented by co-treatment with the SPHK1 inhibitor SK1-IN-1. SK1-IN-1 alone was sufficient to up-regulate osteogenic signaling in VSMCs during control conditions. Similarly, the SPHK1 inhibitor PF-543 and SPHK1 knockdown up-regulated osteogenic signaling in VSMCs and aggravated VSMC calcification. In contrast, co-treatment with the SPNS2 inhibitor SLF1081851 suppressed osteogenic signaling and calcification of VSMCs, effects abolished by silencing of SPHK1. In addition, Sphk1 deficiency aggravated vascular calcification and aortic osteogenic marker expression in mice after cholecalciferol overload. In conclusion, SPHK1 inhibition, knockdown, or deficiency aggravates vascular pro-calcific signaling and calcification. The reduced calcification after inhibition of S1P export suggests a possible involvement of intracellular S1P, but further studies are required to elucidate the complex roles of SPHKs and S1P signaling in calcifying VSMCs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.80
自引率
2.20%
发文量
121
审稿时长
4-8 weeks
期刊介绍: Pflügers Archiv European Journal of Physiology publishes those results of original research that are seen as advancing the physiological sciences, especially those providing mechanistic insights into physiological functions at the molecular and cellular level, and clearly conveying a physiological message. Submissions are encouraged that deal with the evaluation of molecular and cellular mechanisms of disease, ideally resulting in translational research. Purely descriptive papers covering applied physiology or clinical papers will be excluded. Papers on methodological topics will be considered if they contribute to the development of novel tools for further investigation of (patho)physiological mechanisms.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信