平鳍中船鱼内耳中生殖状态相关的细胞更新。

IF 2.8 2区 生物学 Q2 BIOLOGY
Journal of Experimental Biology Pub Date : 2025-03-15 Epub Date: 2025-03-19 DOI:10.1242/jeb.250239
Coty W Jasper, Olivia Molano, Forrest Fearington, Joseph A Sisneros, Allison B Coffin
{"title":"平鳍中船鱼内耳中生殖状态相关的细胞更新。","authors":"Coty W Jasper, Olivia Molano, Forrest Fearington, Joseph A Sisneros, Allison B Coffin","doi":"10.1242/jeb.250239","DOIUrl":null,"url":null,"abstract":"<p><p>Plainfin midshipman fish (Porichthys notatus) exhibit seasonal auditory plasticity that enhances their reproductive success. During the summer, type I male midshipman acoustically court females and both the males and females exhibit increased auditory sensitivity during this period. The enhanced auditory sensitivity is associated with increased density of sensory hair cells in the saccule but not the utricle, suggesting that different mechanisms underlie physiological plasticity in distinct inner ear regions. To better understand how shifts in hair cell number occur within auditory tissues, we examined cell turnover across breeding states and sexes in midshipman fish. We found that reproductive type I males exhibited less saccular cell proliferation than non-reproductive males without a change in cell death, indicating a net loss of saccular cells during the breeding season. By contrast, saccular cell proliferation increased in summer females, with no seasonal changes in other inner ear epithelia. Collectively, our data reveal that multiple mechanisms are likely to contribute to seasonal auditory plasticity within a single species, potentially within the ear of an individual animal.</p>","PeriodicalId":15786,"journal":{"name":"Journal of Experimental Biology","volume":" ","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11959704/pdf/","citationCount":"0","resultStr":"{\"title\":\"Reproductive state-dependent cell turnover in the inner ear of the plainfin midshipman fish (Porichthys notatus).\",\"authors\":\"Coty W Jasper, Olivia Molano, Forrest Fearington, Joseph A Sisneros, Allison B Coffin\",\"doi\":\"10.1242/jeb.250239\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Plainfin midshipman fish (Porichthys notatus) exhibit seasonal auditory plasticity that enhances their reproductive success. During the summer, type I male midshipman acoustically court females and both the males and females exhibit increased auditory sensitivity during this period. The enhanced auditory sensitivity is associated with increased density of sensory hair cells in the saccule but not the utricle, suggesting that different mechanisms underlie physiological plasticity in distinct inner ear regions. To better understand how shifts in hair cell number occur within auditory tissues, we examined cell turnover across breeding states and sexes in midshipman fish. We found that reproductive type I males exhibited less saccular cell proliferation than non-reproductive males without a change in cell death, indicating a net loss of saccular cells during the breeding season. By contrast, saccular cell proliferation increased in summer females, with no seasonal changes in other inner ear epithelia. Collectively, our data reveal that multiple mechanisms are likely to contribute to seasonal auditory plasticity within a single species, potentially within the ear of an individual animal.</p>\",\"PeriodicalId\":15786,\"journal\":{\"name\":\"Journal of Experimental Biology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11959704/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Experimental Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1242/jeb.250239\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/3/19 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Experimental Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1242/jeb.250239","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/19 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

平鳍鱼(Porichthys notatus)表现出季节性的听觉可塑性,这可能提高了它们的繁殖成功率。在夏季,I型(TI)男性海军军官候补生在听觉上追求女性,在此期间,TI男性和女性都表现出增强的听觉敏感性。听觉敏感性的增强与囊内感觉毛细胞密度的增加有关,而与耳室无关,这表明不同内耳区域的生理可塑性背后存在不同的机制。为了更好地理解毛细胞数量的变化是如何在听觉组织中发生的,我们研究了在繁殖状态和性别之间的细胞更替。我们发现,与非生殖雄性相比,具有生殖能力的雄性TI表现出较少的囊状细胞增殖,但细胞死亡却没有变化,这表明在繁殖季节囊状细胞的净损失。相比之下,夏季雌性的囊细胞增殖增加,而其他内耳上皮没有季节性变化。总的来说,我们的数据揭示了多种机制可能有助于单个物种的季节性听觉可塑性,可能在单个动物的耳朵内。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Reproductive state-dependent cell turnover in the inner ear of the plainfin midshipman fish (Porichthys notatus).

Plainfin midshipman fish (Porichthys notatus) exhibit seasonal auditory plasticity that enhances their reproductive success. During the summer, type I male midshipman acoustically court females and both the males and females exhibit increased auditory sensitivity during this period. The enhanced auditory sensitivity is associated with increased density of sensory hair cells in the saccule but not the utricle, suggesting that different mechanisms underlie physiological plasticity in distinct inner ear regions. To better understand how shifts in hair cell number occur within auditory tissues, we examined cell turnover across breeding states and sexes in midshipman fish. We found that reproductive type I males exhibited less saccular cell proliferation than non-reproductive males without a change in cell death, indicating a net loss of saccular cells during the breeding season. By contrast, saccular cell proliferation increased in summer females, with no seasonal changes in other inner ear epithelia. Collectively, our data reveal that multiple mechanisms are likely to contribute to seasonal auditory plasticity within a single species, potentially within the ear of an individual animal.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.50
自引率
10.70%
发文量
494
审稿时长
1 months
期刊介绍: Journal of Experimental Biology is the leading primary research journal in comparative physiology and publishes papers on the form and function of living organisms at all levels of biological organisation, from the molecular and subcellular to the integrated whole animal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信