血管化组织和器官再生用水凝胶三维打印技术的研究进展。

IF 3.6 4区 医学 Q2 ENGINEERING, BIOMEDICAL
Tien Dat Nguyen, Thanh-Qua Nguyen, Van Toi Vo, Thi-Hiep Nguyen
{"title":"血管化组织和器官再生用水凝胶三维打印技术的研究进展。","authors":"Tien Dat Nguyen, Thanh-Qua Nguyen, Van Toi Vo, Thi-Hiep Nguyen","doi":"10.1080/09205063.2024.2449294","DOIUrl":null,"url":null,"abstract":"<p><p>Over the last decades, three-dimensional (3D) printing has emerged as one of the most promising alternative tissue and organ regeneration technologies. Recent advances in 3D printing technology, particularly in hydrogel-derived bioink formulations, offer promising solutions for fabricating intricate, biomimetic scaffolds that promote vascularization. In this review, we presented numerous studies that have been conducted to fabricate 3D-printed hydrogel vascularized constructs with significant advancements in printing integumentary systems, cardiovascular systems, vascularized bone tissues, skeletal muscles, livers, and kidneys. Furthermore, this work also discusses the engineering considerations, current challenges, proposed solutions, and future outlooks of 3D bioprinting.</p>","PeriodicalId":15195,"journal":{"name":"Journal of Biomaterials Science, Polymer Edition","volume":" ","pages":"1423-1465"},"PeriodicalIF":3.6000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Advances in three-dimensional printing of hydrogel formulations for vascularized tissue and organ regeneration.\",\"authors\":\"Tien Dat Nguyen, Thanh-Qua Nguyen, Van Toi Vo, Thi-Hiep Nguyen\",\"doi\":\"10.1080/09205063.2024.2449294\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Over the last decades, three-dimensional (3D) printing has emerged as one of the most promising alternative tissue and organ regeneration technologies. Recent advances in 3D printing technology, particularly in hydrogel-derived bioink formulations, offer promising solutions for fabricating intricate, biomimetic scaffolds that promote vascularization. In this review, we presented numerous studies that have been conducted to fabricate 3D-printed hydrogel vascularized constructs with significant advancements in printing integumentary systems, cardiovascular systems, vascularized bone tissues, skeletal muscles, livers, and kidneys. Furthermore, this work also discusses the engineering considerations, current challenges, proposed solutions, and future outlooks of 3D bioprinting.</p>\",\"PeriodicalId\":15195,\"journal\":{\"name\":\"Journal of Biomaterials Science, Polymer Edition\",\"volume\":\" \",\"pages\":\"1423-1465\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2025-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biomaterials Science, Polymer Edition\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/09205063.2024.2449294\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/2/3 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomaterials Science, Polymer Edition","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/09205063.2024.2449294","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/3 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

在过去的几十年里,三维(3D)打印已经成为最有前途的替代组织和器官再生技术之一。3D打印技术的最新进展,特别是水凝胶衍生的生物链接配方,为制造复杂的、促进血管化的仿生支架提供了有前途的解决方案。在这篇综述中,我们介绍了许多关于3d打印水凝胶血管化结构的研究,这些研究在打印内脏系统、心血管系统、血管化骨组织、骨骼肌、肝脏和肾脏方面取得了重大进展。此外,本工作还讨论了3D生物打印的工程考虑因素,当前的挑战,提出的解决方案以及未来的前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Advances in three-dimensional printing of hydrogel formulations for vascularized tissue and organ regeneration.

Over the last decades, three-dimensional (3D) printing has emerged as one of the most promising alternative tissue and organ regeneration technologies. Recent advances in 3D printing technology, particularly in hydrogel-derived bioink formulations, offer promising solutions for fabricating intricate, biomimetic scaffolds that promote vascularization. In this review, we presented numerous studies that have been conducted to fabricate 3D-printed hydrogel vascularized constructs with significant advancements in printing integumentary systems, cardiovascular systems, vascularized bone tissues, skeletal muscles, livers, and kidneys. Furthermore, this work also discusses the engineering considerations, current challenges, proposed solutions, and future outlooks of 3D bioprinting.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Biomaterials Science, Polymer Edition
Journal of Biomaterials Science, Polymer Edition 工程技术-材料科学:生物材料
CiteScore
7.10
自引率
5.60%
发文量
117
审稿时长
1.5 months
期刊介绍: The Journal of Biomaterials Science, Polymer Edition publishes fundamental research on the properties of polymeric biomaterials and the mechanisms of interaction between such biomaterials and living organisms, with special emphasis on the molecular and cellular levels. The scope of the journal includes polymers for drug delivery, tissue engineering, large molecules in living organisms like DNA, proteins and more. As such, the Journal of Biomaterials Science, Polymer Edition combines biomaterials applications in biomedical, pharmaceutical and biological fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信