过氧化物酶快速有效去除马铃薯中2,4-二氯酚。

IF 2.2 4区 环境科学与生态学 Q3 ENVIRONMENTAL SCIENCES
Environmental Technology Pub Date : 2025-06-01 Epub Date: 2025-02-02 DOI:10.1080/09593330.2025.2456134
Dajuan Zhang, Xin Li, Shulin Zhang, Fangdi Cong, Mengmeng Cao
{"title":"过氧化物酶快速有效去除马铃薯中2,4-二氯酚。","authors":"Dajuan Zhang, Xin Li, Shulin Zhang, Fangdi Cong, Mengmeng Cao","doi":"10.1080/09593330.2025.2456134","DOIUrl":null,"url":null,"abstract":"<p><p>Phenolic compounds discharged in environmental water are required to remove as soon as possible by using the effective methods such as peroxidase catalyzed oxidation to avoid harm to human health. The crude peroxidase is sectionally salted out of potato starch processing wastewater by 40-70% saturated ammonium sulphate, and used to catalyze oxidation of 2,4-dichlorophenol by hydrogen peroxide. Results show that the potato peroxidase has a fine catalytic effect on the oxidation of hydrogen peroxide at 20-50 ℃ and pH 3-10. In just 10 min, 98% of phenol compound can be effectively removed from 1 mL of reaction system containing 1.0 mmol/L 2,4-dichlorophenol, 1.2 mmol/L H<sub>2</sub>O<sub>2</sub> and 50 U/mL peroxidase at pH 6. Obviously, this peroxidase catalyzed oxidation is a green, rapid and effective way, having great potential for removing 2-4-dichlorophenol from polluted water bodies.</p>","PeriodicalId":12009,"journal":{"name":"Environmental Technology","volume":" ","pages":"3158-3167"},"PeriodicalIF":2.2000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rapid and effective removal of 2,4-dichlorophenol by peroxidase from potato.\",\"authors\":\"Dajuan Zhang, Xin Li, Shulin Zhang, Fangdi Cong, Mengmeng Cao\",\"doi\":\"10.1080/09593330.2025.2456134\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Phenolic compounds discharged in environmental water are required to remove as soon as possible by using the effective methods such as peroxidase catalyzed oxidation to avoid harm to human health. The crude peroxidase is sectionally salted out of potato starch processing wastewater by 40-70% saturated ammonium sulphate, and used to catalyze oxidation of 2,4-dichlorophenol by hydrogen peroxide. Results show that the potato peroxidase has a fine catalytic effect on the oxidation of hydrogen peroxide at 20-50 ℃ and pH 3-10. In just 10 min, 98% of phenol compound can be effectively removed from 1 mL of reaction system containing 1.0 mmol/L 2,4-dichlorophenol, 1.2 mmol/L H<sub>2</sub>O<sub>2</sub> and 50 U/mL peroxidase at pH 6. Obviously, this peroxidase catalyzed oxidation is a green, rapid and effective way, having great potential for removing 2-4-dichlorophenol from polluted water bodies.</p>\",\"PeriodicalId\":12009,\"journal\":{\"name\":\"Environmental Technology\",\"volume\":\" \",\"pages\":\"3158-3167\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Technology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1080/09593330.2025.2456134\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/2/2 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Technology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/09593330.2025.2456134","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/2 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

环境水体中排放的酚类化合物要求尽快通过过氧化物酶催化氧化等有效方法去除,避免对人体健康造成危害。用40-70%饱和硫酸铵对马铃薯淀粉加工废水中粗过氧化物酶进行分段盐化处理,用于过氧化氢催化2,4-二氯苯酚的氧化。结果表明,马铃薯过氧化物酶在20 ~ 50℃、pH 3 ~ 10条件下对过氧化氢的氧化有较好的催化作用。以1.0 mmol/L 2,4-二氯苯酚、1.2 mmol/L H2O2和50 U/mL过氧化物酶为原料,pH为6,反应体系为1 mL,在10 min内可有效去除98%的苯酚化合物。显然,这种过氧化物酶催化氧化法是一种绿色、快速、有效的去除污染水体中2-4-二氯酚的方法,具有很大的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Rapid and effective removal of 2,4-dichlorophenol by peroxidase from potato.

Phenolic compounds discharged in environmental water are required to remove as soon as possible by using the effective methods such as peroxidase catalyzed oxidation to avoid harm to human health. The crude peroxidase is sectionally salted out of potato starch processing wastewater by 40-70% saturated ammonium sulphate, and used to catalyze oxidation of 2,4-dichlorophenol by hydrogen peroxide. Results show that the potato peroxidase has a fine catalytic effect on the oxidation of hydrogen peroxide at 20-50 ℃ and pH 3-10. In just 10 min, 98% of phenol compound can be effectively removed from 1 mL of reaction system containing 1.0 mmol/L 2,4-dichlorophenol, 1.2 mmol/L H2O2 and 50 U/mL peroxidase at pH 6. Obviously, this peroxidase catalyzed oxidation is a green, rapid and effective way, having great potential for removing 2-4-dichlorophenol from polluted water bodies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Environmental Technology
Environmental Technology 环境科学-环境科学
CiteScore
6.50
自引率
3.60%
发文量
0
审稿时长
4 months
期刊介绍: Environmental Technology is a leading journal for the rapid publication of science and technology papers on a wide range of topics in applied environmental studies, from environmental engineering to environmental biotechnology, the circular economy, municipal and industrial wastewater management, drinking-water treatment, air- and water-pollution control, solid-waste management, industrial hygiene and associated technologies. Environmental Technology is intended to provide rapid publication of new developments in environmental technology. The journal has an international readership with a broad scientific base. Contributions will be accepted from scientists and engineers in industry, government and universities. Accepted manuscripts are generally published within four months. Please note that Environmental Technology does not publish any review papers unless for a specified special issue which is decided by the Editor. Please do submit your review papers to our sister journal Environmental Technology Reviews at http://www.tandfonline.com/toc/tetr20/current
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信