突触多室组织中的相分离。

IF 4.8 2区 医学 Q1 NEUROSCIENCES
Shihan Zhu , Zeyu Shen , Xiandeng Wu , Mingjie Zhang
{"title":"突触多室组织中的相分离。","authors":"Shihan Zhu ,&nbsp;Zeyu Shen ,&nbsp;Xiandeng Wu ,&nbsp;Mingjie Zhang","doi":"10.1016/j.conb.2025.102975","DOIUrl":null,"url":null,"abstract":"<div><div>A neuronal synapse is formed by juxtaposition of a transmitter releasing presynaptic bouton of one neuron with a transmitter receiving postsynaptic compartment such as a spine protrusion of another neuron. Each presynaptic bouton and postsynaptic spine, though very small in their volumes already, are further compartmentalized to micro-/nano-domains with distinct molecular organizations and synaptic functions. This review summarizes studies in recent years demonstrating that multivalent protein–protein interaction-induced phase separation underlies formation and coexistence of multiple distinct molecular condensates within tiny synapses. In post-synapses where synaptic compartmentalization via phase separation was first demonstrated, phase separation allows clustering of transmitter receptors into distinct nanodomains and renders postsynaptic densities to be regulated by synaptic stimulation signals for plasticity. In pre-synapses, such phase separation-mediated synaptic condensates formation allows SVs to be stored as distinct pools and directly transported for activity-induced transmitter release.</div></div>","PeriodicalId":10999,"journal":{"name":"Current Opinion in Neurobiology","volume":"90 ","pages":"Article 102975"},"PeriodicalIF":4.8000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Phase separation in the multi-compartment organization of synapses\",\"authors\":\"Shihan Zhu ,&nbsp;Zeyu Shen ,&nbsp;Xiandeng Wu ,&nbsp;Mingjie Zhang\",\"doi\":\"10.1016/j.conb.2025.102975\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>A neuronal synapse is formed by juxtaposition of a transmitter releasing presynaptic bouton of one neuron with a transmitter receiving postsynaptic compartment such as a spine protrusion of another neuron. Each presynaptic bouton and postsynaptic spine, though very small in their volumes already, are further compartmentalized to micro-/nano-domains with distinct molecular organizations and synaptic functions. This review summarizes studies in recent years demonstrating that multivalent protein–protein interaction-induced phase separation underlies formation and coexistence of multiple distinct molecular condensates within tiny synapses. In post-synapses where synaptic compartmentalization via phase separation was first demonstrated, phase separation allows clustering of transmitter receptors into distinct nanodomains and renders postsynaptic densities to be regulated by synaptic stimulation signals for plasticity. In pre-synapses, such phase separation-mediated synaptic condensates formation allows SVs to be stored as distinct pools and directly transported for activity-induced transmitter release.</div></div>\",\"PeriodicalId\":10999,\"journal\":{\"name\":\"Current Opinion in Neurobiology\",\"volume\":\"90 \",\"pages\":\"Article 102975\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Opinion in Neurobiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0959438825000066\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Neurobiology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0959438825000066","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

神经元突触是由释放一个神经元的突触前按钮的递质与接收另一个神经元的脊柱突起等突触后间隔的递质并置而形成的。每个突触前钮扣和突触后棘虽然体积很小,但它们被进一步划分为具有不同分子组织和突触功能的微/纳米结构域。本文综述了近年来的研究表明,多价蛋白-蛋白相互作用诱导的相分离是微小突触内多种不同分子凝聚物形成和共存的基础。在突触后,通过相分离首次证明了突触区隔化,相分离允许传递受体聚集到不同的纳米结构域,并使突触后密度受到突触刺激信号的调节,以实现可塑性。在突触前,这种相分离介导的突触凝聚物的形成使sv被储存为不同的池,并直接运输以供活性诱导的递质释放。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Phase separation in the multi-compartment organization of synapses
A neuronal synapse is formed by juxtaposition of a transmitter releasing presynaptic bouton of one neuron with a transmitter receiving postsynaptic compartment such as a spine protrusion of another neuron. Each presynaptic bouton and postsynaptic spine, though very small in their volumes already, are further compartmentalized to micro-/nano-domains with distinct molecular organizations and synaptic functions. This review summarizes studies in recent years demonstrating that multivalent protein–protein interaction-induced phase separation underlies formation and coexistence of multiple distinct molecular condensates within tiny synapses. In post-synapses where synaptic compartmentalization via phase separation was first demonstrated, phase separation allows clustering of transmitter receptors into distinct nanodomains and renders postsynaptic densities to be regulated by synaptic stimulation signals for plasticity. In pre-synapses, such phase separation-mediated synaptic condensates formation allows SVs to be stored as distinct pools and directly transported for activity-induced transmitter release.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Current Opinion in Neurobiology
Current Opinion in Neurobiology 医学-神经科学
CiteScore
11.10
自引率
1.80%
发文量
130
审稿时长
4-8 weeks
期刊介绍: Current Opinion in Neurobiology publishes short annotated reviews by leading experts on recent developments in the field of neurobiology. These experts write short reviews describing recent discoveries in this field (in the past 2-5 years), as well as highlighting select individual papers of particular significance. The journal is thus an important resource allowing researchers and educators to quickly gain an overview and rich understanding of complex and current issues in the field of Neurobiology. The journal takes a unique and valuable approach in focusing each special issue around a topic of scientific and/or societal interest, and then bringing together leading international experts studying that topic, embracing diverse methodologies and perspectives. Journal Content: The journal consists of 6 issues per year, covering 8 recurring topics every other year in the following categories: -Neurobiology of Disease- Neurobiology of Behavior- Cellular Neuroscience- Systems Neuroscience- Developmental Neuroscience- Neurobiology of Learning and Plasticity- Molecular Neuroscience- Computational Neuroscience
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信