姜黄素通过调控NF-κB通路和NLRP3炎性体抑制关节软骨细胞凋亡的作用。

IF 2 4区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Cytotechnology Pub Date : 2025-04-01 Epub Date: 2025-01-31 DOI:10.1007/s10616-024-00695-2
Haobo Li, Shuai Yuan, Zhipeng Yue, Lei Zhang, Shu Chen, Qirong Qian, Qiwei Fu, Yi Chen
{"title":"姜黄素通过调控NF-κB通路和NLRP3炎性体抑制关节软骨细胞凋亡的作用。","authors":"Haobo Li, Shuai Yuan, Zhipeng Yue, Lei Zhang, Shu Chen, Qirong Qian, Qiwei Fu, Yi Chen","doi":"10.1007/s10616-024-00695-2","DOIUrl":null,"url":null,"abstract":"<p><p>Our study probed into how curcumin modulates NF-κB pathway to regulate articular chondrocytes. ATDC5 cells were exposed to varying concentrations of curcumin (0, 10, 20, 50, or 100 μM) for 48 h, followed by an assessment of curcumin's cytotoxicity. Cells were also treated with 10 ng/ml IL-1β, curcumin, 5 μg/L NF-κB inhibitor (PDTC), and 5 μM NLRP3 inflammasome inducer (nigericin) for 48 h, before cell viability, apoptosis, NF-κB pathway-related proteins, NLRP3 inflammasome-related proteins and inflammatory cytokines were detected. IL-1β treatment notably diminished chondrocyte viability and increased apoptosis, evidenced by elevated level of Bax and cleaved caspase-3, and reduced level of Bcl2, while such expression patterns were reversed by curcumin treatment in a concentration-dependent fashion. Additionally, NF-κB pathway and NLRP3 inflammasome in chondrocytes were activated by IL-1β treatment, but can also be suppressed following curcumin intervention. Furthermore, inhibition of NF-κB pathway curtailed the NLRP3 inflammasome activation and chondrocyte apoptosis, while activation of the NLRP3 inflammasome partially reversed the protective impacts of curcumin against chondrocyte apoptosis. Curcumin inhibits NF-κB pathway, thereby preventing the NLRP3 inflammasome activation and ameliorating IL-1β-induced apoptosis in articular chondrocytes.</p>","PeriodicalId":10890,"journal":{"name":"Cytotechnology","volume":"77 2","pages":"52"},"PeriodicalIF":2.0000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11785841/pdf/","citationCount":"0","resultStr":"{\"title\":\"Suppressive effect of curcumin on apoptosis of articular chondrocytes via regulation on NF-κB pathway and NLRP3 inflammasome.\",\"authors\":\"Haobo Li, Shuai Yuan, Zhipeng Yue, Lei Zhang, Shu Chen, Qirong Qian, Qiwei Fu, Yi Chen\",\"doi\":\"10.1007/s10616-024-00695-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Our study probed into how curcumin modulates NF-κB pathway to regulate articular chondrocytes. ATDC5 cells were exposed to varying concentrations of curcumin (0, 10, 20, 50, or 100 μM) for 48 h, followed by an assessment of curcumin's cytotoxicity. Cells were also treated with 10 ng/ml IL-1β, curcumin, 5 μg/L NF-κB inhibitor (PDTC), and 5 μM NLRP3 inflammasome inducer (nigericin) for 48 h, before cell viability, apoptosis, NF-κB pathway-related proteins, NLRP3 inflammasome-related proteins and inflammatory cytokines were detected. IL-1β treatment notably diminished chondrocyte viability and increased apoptosis, evidenced by elevated level of Bax and cleaved caspase-3, and reduced level of Bcl2, while such expression patterns were reversed by curcumin treatment in a concentration-dependent fashion. Additionally, NF-κB pathway and NLRP3 inflammasome in chondrocytes were activated by IL-1β treatment, but can also be suppressed following curcumin intervention. Furthermore, inhibition of NF-κB pathway curtailed the NLRP3 inflammasome activation and chondrocyte apoptosis, while activation of the NLRP3 inflammasome partially reversed the protective impacts of curcumin against chondrocyte apoptosis. Curcumin inhibits NF-κB pathway, thereby preventing the NLRP3 inflammasome activation and ameliorating IL-1β-induced apoptosis in articular chondrocytes.</p>\",\"PeriodicalId\":10890,\"journal\":{\"name\":\"Cytotechnology\",\"volume\":\"77 2\",\"pages\":\"52\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2025-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11785841/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cytotechnology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s10616-024-00695-2\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/31 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cytotechnology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10616-024-00695-2","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/31 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

本研究探讨姜黄素如何通过NF-κB通路调节关节软骨细胞。将ATDC5细胞暴露于不同浓度的姜黄素(0、10、20、50或100 μM)中48小时,然后评估姜黄素的细胞毒性。用10 ng/ml IL-1β、姜黄素、5 μg/L NF-κB抑制剂(PDTC)、5 μM NLRP3炎性小体诱导剂(尼日利亚菌素)处理细胞48 h,检测细胞活力、凋亡、NF-κB通路相关蛋白、NLRP3炎性小体相关蛋白和炎症因子。IL-1β处理显著降低软骨细胞活力,增加细胞凋亡,Bax和cleaved caspase-3水平升高,Bcl2水平降低,而姜黄素处理以浓度依赖性的方式逆转了这种表达模式。此外,软骨细胞中的NF-κB通路和NLRP3炎性体可被IL-1β激活,但也可在姜黄素干预后被抑制。此外,NF-κB通路的抑制抑制了NLRP3炎性小体的激活和软骨细胞凋亡,而NLRP3炎性小体的激活部分逆转了姜黄素对软骨细胞凋亡的保护作用。姜黄素抑制NF-κB通路,从而阻止NLRP3炎性体活化,改善il -1β诱导的关节软骨细胞凋亡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Suppressive effect of curcumin on apoptosis of articular chondrocytes via regulation on NF-κB pathway and NLRP3 inflammasome.

Our study probed into how curcumin modulates NF-κB pathway to regulate articular chondrocytes. ATDC5 cells were exposed to varying concentrations of curcumin (0, 10, 20, 50, or 100 μM) for 48 h, followed by an assessment of curcumin's cytotoxicity. Cells were also treated with 10 ng/ml IL-1β, curcumin, 5 μg/L NF-κB inhibitor (PDTC), and 5 μM NLRP3 inflammasome inducer (nigericin) for 48 h, before cell viability, apoptosis, NF-κB pathway-related proteins, NLRP3 inflammasome-related proteins and inflammatory cytokines were detected. IL-1β treatment notably diminished chondrocyte viability and increased apoptosis, evidenced by elevated level of Bax and cleaved caspase-3, and reduced level of Bcl2, while such expression patterns were reversed by curcumin treatment in a concentration-dependent fashion. Additionally, NF-κB pathway and NLRP3 inflammasome in chondrocytes were activated by IL-1β treatment, but can also be suppressed following curcumin intervention. Furthermore, inhibition of NF-κB pathway curtailed the NLRP3 inflammasome activation and chondrocyte apoptosis, while activation of the NLRP3 inflammasome partially reversed the protective impacts of curcumin against chondrocyte apoptosis. Curcumin inhibits NF-κB pathway, thereby preventing the NLRP3 inflammasome activation and ameliorating IL-1β-induced apoptosis in articular chondrocytes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cytotechnology
Cytotechnology 生物-生物工程与应用微生物
CiteScore
4.10
自引率
0.00%
发文量
49
审稿时长
6-12 weeks
期刊介绍: The scope of the Journal includes: 1. The derivation, genetic modification and characterization of cell lines, genetic and phenotypic regulation, control of cellular metabolism, cell physiology and biochemistry related to cell function, performance and expression of cell products. 2. Cell culture techniques, substrates, environmental requirements and optimization, cloning, hybridization and molecular biology, including genomic and proteomic tools. 3. Cell culture systems, processes, reactors, scale-up, and industrial production. Descriptions of the design or construction of equipment, media or quality control procedures, that are ancillary to cellular research. 4. The application of animal/human cells in research in the field of stem cell research including maintenance of stemness, differentiation, genetics, and senescence, cancer research, research in immunology, as well as applications in tissue engineering and gene therapy. 5. The use of cell cultures as a substrate for bioassays, biomedical applications and in particular as a replacement for animal models.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信