应用多元自适应回归样条预测中国妇女胰岛素抵抗。

IF 1.3 4区 医学 Q4 ENDOCRINOLOGY & METABOLISM
Endocrine journal Pub Date : 2025-04-01 Epub Date: 2025-02-01 DOI:10.1507/endocrj.EJ24-0449
Shih-Peng Mao, Chen-Yu Wang, Chi-Hao Liu, Chung-Bao Hsieh, Dee Pei, Ta-Wei Chu, Yao-Jen Liang
{"title":"应用多元自适应回归样条预测中国妇女胰岛素抵抗。","authors":"Shih-Peng Mao, Chen-Yu Wang, Chi-Hao Liu, Chung-Bao Hsieh, Dee Pei, Ta-Wei Chu, Yao-Jen Liang","doi":"10.1507/endocrj.EJ24-0449","DOIUrl":null,"url":null,"abstract":"<p><p>Insulin resistance (IR) is the core for type 2 diabetes and metabolic syndrome. The homeostasis assessment model is a straightforward and practical tool for quantifying insulin resistance (HOMA-IR). Multiple adaptive regression spline (MARS) is a machine learning method used in many research fields but has yet to be applied to estimating HOMA-IR. This study uses MARS to build an equation to estimate HOMA-IR in pre-menopausal Chinese women based on a sample of 4,071 healthy women aged 20-50 with no major diseases and no medication use for blood pressure, blood glucose or blood lipids. Thirty variables were applied to build the HOMA-IR model, including demographic, laboratory, and lifestyle factors. MARS results in smaller prediction errors than traditional multiple linear regression (MLR) methods, and is thus more accurate. The model was established based on key impact factors including waist-hip ratio (WHR), C reactive protein (CRP), uric acid (UA), total bilirubin (TBIL), leukocyte (WBC), serum glutamic oxaloacetic transaminase (GOT), high-density lipoprotein cholesterol (HDL-C), systolic blood pressure (SBP), serum glutamic pyruvic transaminase (GPT), and triglycerides (TG). The equation is as following:HOMA-IR = 6.634 - 1.448MAX(0, 0.833 - WHR) + 10.152MAX(0, WHR - 0.833) - 1.351MAX(0, 0.7 - CRP) - 0.449MAX(0, CRP - 0.7) + 1.062MAX(0, UA - 8.5) + +1.047(MAX(0, 0.83 - TBIL) + 0.681MAX(0, WBC - 11.53) - 0.071MAX(0, 11.53 - WBC) + 0.043MAX(0, 24 - GOT) - 0.017MAX(0, GOT - 24) + 0.021MAX(0, 59 - HDL) - 0.005MAX(0, HDL - 59) - 0.013MAX(0, 141 - SBP) - 0.033MAX(0, 100 - GPT) + 0.013MAX(0, GPT - 100) - 0.004MAX(303 - TG)Results indicate that MARS is a more precise tool than fasting plasma insulin (FPI) levels, and could be used in the daily practice, and further longitudinal studies are warranted.</p>","PeriodicalId":11631,"journal":{"name":"Endocrine journal","volume":" ","pages":"387-398"},"PeriodicalIF":1.3000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11997268/pdf/","citationCount":"0","resultStr":"{\"title\":\"Prediction of insulin resistance using multiple adaptive regression spline in Chinese women.\",\"authors\":\"Shih-Peng Mao, Chen-Yu Wang, Chi-Hao Liu, Chung-Bao Hsieh, Dee Pei, Ta-Wei Chu, Yao-Jen Liang\",\"doi\":\"10.1507/endocrj.EJ24-0449\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Insulin resistance (IR) is the core for type 2 diabetes and metabolic syndrome. The homeostasis assessment model is a straightforward and practical tool for quantifying insulin resistance (HOMA-IR). Multiple adaptive regression spline (MARS) is a machine learning method used in many research fields but has yet to be applied to estimating HOMA-IR. This study uses MARS to build an equation to estimate HOMA-IR in pre-menopausal Chinese women based on a sample of 4,071 healthy women aged 20-50 with no major diseases and no medication use for blood pressure, blood glucose or blood lipids. Thirty variables were applied to build the HOMA-IR model, including demographic, laboratory, and lifestyle factors. MARS results in smaller prediction errors than traditional multiple linear regression (MLR) methods, and is thus more accurate. The model was established based on key impact factors including waist-hip ratio (WHR), C reactive protein (CRP), uric acid (UA), total bilirubin (TBIL), leukocyte (WBC), serum glutamic oxaloacetic transaminase (GOT), high-density lipoprotein cholesterol (HDL-C), systolic blood pressure (SBP), serum glutamic pyruvic transaminase (GPT), and triglycerides (TG). The equation is as following:HOMA-IR = 6.634 - 1.448MAX(0, 0.833 - WHR) + 10.152MAX(0, WHR - 0.833) - 1.351MAX(0, 0.7 - CRP) - 0.449MAX(0, CRP - 0.7) + 1.062MAX(0, UA - 8.5) + +1.047(MAX(0, 0.83 - TBIL) + 0.681MAX(0, WBC - 11.53) - 0.071MAX(0, 11.53 - WBC) + 0.043MAX(0, 24 - GOT) - 0.017MAX(0, GOT - 24) + 0.021MAX(0, 59 - HDL) - 0.005MAX(0, HDL - 59) - 0.013MAX(0, 141 - SBP) - 0.033MAX(0, 100 - GPT) + 0.013MAX(0, GPT - 100) - 0.004MAX(303 - TG)Results indicate that MARS is a more precise tool than fasting plasma insulin (FPI) levels, and could be used in the daily practice, and further longitudinal studies are warranted.</p>\",\"PeriodicalId\":11631,\"journal\":{\"name\":\"Endocrine journal\",\"volume\":\" \",\"pages\":\"387-398\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2025-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11997268/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Endocrine journal\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1507/endocrj.EJ24-0449\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/2/1 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Endocrine journal","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1507/endocrj.EJ24-0449","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/1 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0

摘要

胰岛素抵抗(IR)是2型糖尿病和代谢综合征的核心。体内平衡评估模型是定量胰岛素抵抗(HOMA-IR)的一种简单实用的工具。多元自适应回归样条(Multiple adaptive regression spline, MARS)是一种应用于许多研究领域的机器学习方法,但尚未应用于HOMA-IR的估计。本研究以4071名年龄在20-50岁、无重大疾病、无血压、血糖或血脂药物的健康女性为样本,利用MARS建立了一个方程来估计绝经前中国女性的HOMA-IR。采用30个变量建立HOMA-IR模型,包括人口统计学、实验室和生活方式因素。与传统的多元线性回归(MLR)方法相比,MARS预测误差更小,精度更高。根据腰臀比(WHR)、C反应蛋白(CRP)、尿酸(UA)、总胆红素(TBIL)、白细胞(WBC)、血清谷草酰乙酸转氨酶(GOT)、高密度脂蛋白胆固醇(HDL-C)、收缩压(SBP)、血清谷丙转氨酶(GPT)、甘油三酯(TG)等关键影响因素建立模型。方程如下:HOMA-IR = 6.634 - 1.448马克斯(0,- 0.833 - WHR) + 10.152马克斯(0,WHR - 0.833) - 1.351马克斯(0.7 0,- c反应蛋白)- 0.449马克斯(0,CRP - 0.7) +马克斯(0,UA - 8.5) + 1.062 + 1.047 (MAX(0, - 0.83 -治疗组)+ 0.681马克斯(0,白细胞- 11.53)- 0.071马克斯(0,- 11.53 -白细胞)+ 0.043马克斯(0,24——)- 0.017马克斯(0,- 24)+ 0.021马克斯(0,59 - HDL) - 0.005马克斯(0,高密度脂蛋白- 59)- 0.013马克斯(0 141 - SBP) - 0.033马克斯(0 100 - GPT) + 0.013 MAX (0,GPT - 100) - 0.004MAX(303 - TG)结果表明,MARS是一个比空腹血浆胰岛素(FPI)水平更精确的工具,可用于日常实践,进一步的纵向研究是有必要的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Prediction of insulin resistance using multiple adaptive regression spline in Chinese women.

Insulin resistance (IR) is the core for type 2 diabetes and metabolic syndrome. The homeostasis assessment model is a straightforward and practical tool for quantifying insulin resistance (HOMA-IR). Multiple adaptive regression spline (MARS) is a machine learning method used in many research fields but has yet to be applied to estimating HOMA-IR. This study uses MARS to build an equation to estimate HOMA-IR in pre-menopausal Chinese women based on a sample of 4,071 healthy women aged 20-50 with no major diseases and no medication use for blood pressure, blood glucose or blood lipids. Thirty variables were applied to build the HOMA-IR model, including demographic, laboratory, and lifestyle factors. MARS results in smaller prediction errors than traditional multiple linear regression (MLR) methods, and is thus more accurate. The model was established based on key impact factors including waist-hip ratio (WHR), C reactive protein (CRP), uric acid (UA), total bilirubin (TBIL), leukocyte (WBC), serum glutamic oxaloacetic transaminase (GOT), high-density lipoprotein cholesterol (HDL-C), systolic blood pressure (SBP), serum glutamic pyruvic transaminase (GPT), and triglycerides (TG). The equation is as following:HOMA-IR = 6.634 - 1.448MAX(0, 0.833 - WHR) + 10.152MAX(0, WHR - 0.833) - 1.351MAX(0, 0.7 - CRP) - 0.449MAX(0, CRP - 0.7) + 1.062MAX(0, UA - 8.5) + +1.047(MAX(0, 0.83 - TBIL) + 0.681MAX(0, WBC - 11.53) - 0.071MAX(0, 11.53 - WBC) + 0.043MAX(0, 24 - GOT) - 0.017MAX(0, GOT - 24) + 0.021MAX(0, 59 - HDL) - 0.005MAX(0, HDL - 59) - 0.013MAX(0, 141 - SBP) - 0.033MAX(0, 100 - GPT) + 0.013MAX(0, GPT - 100) - 0.004MAX(303 - TG)Results indicate that MARS is a more precise tool than fasting plasma insulin (FPI) levels, and could be used in the daily practice, and further longitudinal studies are warranted.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Endocrine journal
Endocrine journal 医学-内分泌学与代谢
CiteScore
4.30
自引率
5.00%
发文量
224
审稿时长
1.5 months
期刊介绍: Endocrine Journal is an open access, peer-reviewed online journal with a long history. This journal publishes peer-reviewed research articles in multifaceted fields of basic, translational and clinical endocrinology. Endocrine Journal provides a chance to exchange your ideas, concepts and scientific observations in any area of recent endocrinology. Manuscripts may be submitted as Original Articles, Notes, Rapid Communications or Review Articles. We have a rapid reviewing and editorial decision system and pay a special attention to our quick, truly scientific and frequently-citable publication. Please go through the link for author guideline.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信