{"title":"进化保守的DHX9/MLE解旋酶参与果蝇自身mRNA表达水平的调控","authors":"I A Zolin, S G Georgieva, J V Nikolenko","doi":"10.1134/S1607672924601239","DOIUrl":null,"url":null,"abstract":"<p><p>The MLE helicase of D. melanogaster, like its ortholog DHX9 in mammals, is involved in a wide range of processes related to the regulation of gene expression. In the present study, we investigated the impact of the mle[9] mutation on its own mRNA expression level. It was shown that in addition to the previously described deletion in the catalytic domain of the protein, which impairs its helicase activity, the mle[9] mutation contains an additional small deletion in the C-terminal domain. In the mle[9] mutation background, there was a threefold increase in the expression of the main transcript of the mle gene encoding the full-length protein. Binding of MLE to chromatin at the coding region and promoters of the mle gene and nearby enhancers was analyzed. To exclude the influence of dosage compensation, experiments were performed on females. The data obtained indicate the role of MLE in specific regulation of its own mRNA expression level in vivo at the adult stage.</p>","PeriodicalId":529,"journal":{"name":"Doklady Biochemistry and Biophysics","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evolutionarily Conserved DHX9/MLE Helicase Is Involved in the Regulation of Its Own mRNA Expression Level in Drosophila melanogaster.\",\"authors\":\"I A Zolin, S G Georgieva, J V Nikolenko\",\"doi\":\"10.1134/S1607672924601239\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The MLE helicase of D. melanogaster, like its ortholog DHX9 in mammals, is involved in a wide range of processes related to the regulation of gene expression. In the present study, we investigated the impact of the mle[9] mutation on its own mRNA expression level. It was shown that in addition to the previously described deletion in the catalytic domain of the protein, which impairs its helicase activity, the mle[9] mutation contains an additional small deletion in the C-terminal domain. In the mle[9] mutation background, there was a threefold increase in the expression of the main transcript of the mle gene encoding the full-length protein. Binding of MLE to chromatin at the coding region and promoters of the mle gene and nearby enhancers was analyzed. To exclude the influence of dosage compensation, experiments were performed on females. The data obtained indicate the role of MLE in specific regulation of its own mRNA expression level in vivo at the adult stage.</p>\",\"PeriodicalId\":529,\"journal\":{\"name\":\"Doklady Biochemistry and Biophysics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2025-01-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Doklady Biochemistry and Biophysics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1134/S1607672924601239\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Doklady Biochemistry and Biophysics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1134/S1607672924601239","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
D. melanogaster的MLE解旋酶与其在哺乳动物中的同源物DHX9一样,参与了一系列与基因表达调控相关的过程。在本研究中,我们研究了mle[9]突变对其自身mRNA表达水平的影响。结果表明,除了先前描述的在该蛋白的催化结构域中的缺失(这会损害其解旋酶活性)外,mle[9]突变在c端结构域中还包含一个额外的小缺失。在mle[9]突变背景下,编码全长蛋白的mle基因主要转录本的表达量增加了三倍。分析了MLE与编码区染色质、MLE基因启动子及附近增强子的结合情况。为了排除剂量补偿的影响,我们在雌性动物身上进行了实验。这些数据表明MLE在体内成虫期特异性调节其自身mRNA表达水平。
Evolutionarily Conserved DHX9/MLE Helicase Is Involved in the Regulation of Its Own mRNA Expression Level in Drosophila melanogaster.
The MLE helicase of D. melanogaster, like its ortholog DHX9 in mammals, is involved in a wide range of processes related to the regulation of gene expression. In the present study, we investigated the impact of the mle[9] mutation on its own mRNA expression level. It was shown that in addition to the previously described deletion in the catalytic domain of the protein, which impairs its helicase activity, the mle[9] mutation contains an additional small deletion in the C-terminal domain. In the mle[9] mutation background, there was a threefold increase in the expression of the main transcript of the mle gene encoding the full-length protein. Binding of MLE to chromatin at the coding region and promoters of the mle gene and nearby enhancers was analyzed. To exclude the influence of dosage compensation, experiments were performed on females. The data obtained indicate the role of MLE in specific regulation of its own mRNA expression level in vivo at the adult stage.
期刊介绍:
Doklady Biochemistry and Biophysics is a journal consisting of English translations of articles published in Russian in biochemistry and biophysics sections of the Russian-language journal Doklady Akademii Nauk. The journal''s goal is to publish the most significant new research in biochemistry and biophysics carried out in Russia today or in collaboration with Russian authors. The journal accepts only articles in the Russian language that are submitted or recommended by acting Russian or foreign members of the Russian Academy of Sciences. The journal does not accept direct submissions in English.