FOXM1是一种超级增强子相关基因,与胰腺癌预后不良和吉西他滨耐药有关。

IF 1.8 4区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY
Cell Biochemistry and Biophysics Pub Date : 2025-06-01 Epub Date: 2025-02-03 DOI:10.1007/s12013-024-01653-7
Jian Jiang, Tianci Shen, Dan Chen, Zihao Dai, Xuelong Wang, Qiang Meng, Zhuo Yang, Di Zhang, Xiaoyi Guo, Jianqiang Xu, Jiangning Gu, Changmiao Wang
{"title":"FOXM1是一种超级增强子相关基因,与胰腺癌预后不良和吉西他滨耐药有关。","authors":"Jian Jiang, Tianci Shen, Dan Chen, Zihao Dai, Xuelong Wang, Qiang Meng, Zhuo Yang, Di Zhang, Xiaoyi Guo, Jianqiang Xu, Jiangning Gu, Changmiao Wang","doi":"10.1007/s12013-024-01653-7","DOIUrl":null,"url":null,"abstract":"<p><p>Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive solid tumor; however, the barrier of chemoresistance has yet to be overcome for longer survival. Aberrant gene expression due to epigenetic modification plays an important role in tumorigenesis and treatment. Super enhancers are epigenetic elements that promote targeted gene transcription and ultimately lead to chemoresistance. This study found that the expression of FOXM1 was higher in PDAC tissues and negatively correlated with prognosis. Through RNA sequencing and chromatin immunoprecipitation-sequencing analyses, FOXM1 was found to be regulated by a BRD4-associated super enhancer, which finally promoted gemcitabine resistance via TGFβ/Smad signaling pathway activation. Both TGFβ/Smad-specific inhibitor LY364947 and the BRD4 inhibitor JQ1 decreased the IC50 value of gemcitabine in vitro. Furthermore, combined gemcitabine and JQ1 therapy could not only enhance the therapeutic effect of gemcitabine but also reverse drug resistance in vivo. In conclusion, the super enhancer-associated gene FOMX1 contributes to gemcitabine resistance and is a promising target in PDAC treatment.</p>","PeriodicalId":510,"journal":{"name":"Cell Biochemistry and Biophysics","volume":" ","pages":"2441-2452"},"PeriodicalIF":1.8000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"FOXM1, a super enhancer-associated gene, is related to poorer prognosis and gemcitabine resistance in pancreatic cancer.\",\"authors\":\"Jian Jiang, Tianci Shen, Dan Chen, Zihao Dai, Xuelong Wang, Qiang Meng, Zhuo Yang, Di Zhang, Xiaoyi Guo, Jianqiang Xu, Jiangning Gu, Changmiao Wang\",\"doi\":\"10.1007/s12013-024-01653-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive solid tumor; however, the barrier of chemoresistance has yet to be overcome for longer survival. Aberrant gene expression due to epigenetic modification plays an important role in tumorigenesis and treatment. Super enhancers are epigenetic elements that promote targeted gene transcription and ultimately lead to chemoresistance. This study found that the expression of FOXM1 was higher in PDAC tissues and negatively correlated with prognosis. Through RNA sequencing and chromatin immunoprecipitation-sequencing analyses, FOXM1 was found to be regulated by a BRD4-associated super enhancer, which finally promoted gemcitabine resistance via TGFβ/Smad signaling pathway activation. Both TGFβ/Smad-specific inhibitor LY364947 and the BRD4 inhibitor JQ1 decreased the IC50 value of gemcitabine in vitro. Furthermore, combined gemcitabine and JQ1 therapy could not only enhance the therapeutic effect of gemcitabine but also reverse drug resistance in vivo. In conclusion, the super enhancer-associated gene FOMX1 contributes to gemcitabine resistance and is a promising target in PDAC treatment.</p>\",\"PeriodicalId\":510,\"journal\":{\"name\":\"Cell Biochemistry and Biophysics\",\"volume\":\" \",\"pages\":\"2441-2452\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2025-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Biochemistry and Biophysics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s12013-024-01653-7\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/2/3 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Biochemistry and Biophysics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s12013-024-01653-7","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/3 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

胰腺导管腺癌(PDAC)是一种高度侵袭性的实体瘤;然而,为了延长生存期,化疗耐药的障碍尚未被克服。表观遗传修饰引起的基因异常表达在肿瘤发生和治疗中起着重要作用。超级增强子是促进靶向基因转录并最终导致化学耐药的表观遗传元件。本研究发现FOXM1在PDAC组织中表达较高,且与预后呈负相关。通过RNA测序和染色质免疫沉淀测序分析,发现FOXM1受brd4相关的超级增强子调控,最终通过TGFβ/Smad信号通路激活促进吉西他滨耐药。TGFβ/ smad特异性抑制剂LY364947和BRD4抑制剂JQ1均可降低吉西他滨体外IC50值。此外,吉西他滨与JQ1联合治疗不仅可以增强吉西他滨的治疗效果,还可以逆转体内耐药。总之,超级增强子相关基因FOMX1与吉西他滨耐药有关,是PDAC治疗中一个有希望的靶点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
FOXM1, a super enhancer-associated gene, is related to poorer prognosis and gemcitabine resistance in pancreatic cancer.

Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive solid tumor; however, the barrier of chemoresistance has yet to be overcome for longer survival. Aberrant gene expression due to epigenetic modification plays an important role in tumorigenesis and treatment. Super enhancers are epigenetic elements that promote targeted gene transcription and ultimately lead to chemoresistance. This study found that the expression of FOXM1 was higher in PDAC tissues and negatively correlated with prognosis. Through RNA sequencing and chromatin immunoprecipitation-sequencing analyses, FOXM1 was found to be regulated by a BRD4-associated super enhancer, which finally promoted gemcitabine resistance via TGFβ/Smad signaling pathway activation. Both TGFβ/Smad-specific inhibitor LY364947 and the BRD4 inhibitor JQ1 decreased the IC50 value of gemcitabine in vitro. Furthermore, combined gemcitabine and JQ1 therapy could not only enhance the therapeutic effect of gemcitabine but also reverse drug resistance in vivo. In conclusion, the super enhancer-associated gene FOMX1 contributes to gemcitabine resistance and is a promising target in PDAC treatment.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cell Biochemistry and Biophysics
Cell Biochemistry and Biophysics 生物-生化与分子生物学
CiteScore
4.40
自引率
0.00%
发文量
72
审稿时长
7.5 months
期刊介绍: Cell Biochemistry and Biophysics (CBB) aims to publish papers on the nature of the biochemical and biophysical mechanisms underlying the structure, control and function of cellular systems The reports should be within the framework of modern biochemistry and chemistry, biophysics and cell physiology, physics and engineering, molecular and structural biology. The relationship between molecular structure and function under investigation is emphasized. Examples of subject areas that CBB publishes are: · biochemical and biophysical aspects of cell structure and function; · interactions of cells and their molecular/macromolecular constituents; · innovative developments in genetic and biomolecular engineering; · computer-based analysis of tissues, cells, cell networks, organelles, and molecular/macromolecular assemblies; · photometric, spectroscopic, microscopic, mechanical, and electrical methodologies/techniques in analytical cytology, cytometry and innovative instrument design For articles that focus on computational aspects, authors should be clear about which docking and molecular dynamics algorithms or software packages are being used as well as details on the system parameterization, simulations conditions etc. In addition, docking calculations (virtual screening, QSAR, etc.) should be validated either by experimental studies or one or more reliable theoretical cross-validation methods.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信