求解泊松方程近似特解的局部赫米特法

IF 2.9 2区 数学 Q1 MATHEMATICS, APPLIED
Kwesi Acheampong, Huiqing Zhu
{"title":"求解泊松方程近似特解的局部赫米特法","authors":"Kwesi Acheampong,&nbsp;Huiqing Zhu","doi":"10.1016/j.aml.2025.109471","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we propose a localized Hermite method of approximate particular solutions (LHMAPS) for solving the Poisson equation. Unlike the localized method of approximate particular solutions (LMAPS) that approximates only function values of the solution in different local neighborhoods of collocation nodes by using particular solutions of radial basis functions, the proposed method employs mixed basis functions, combining radial basis functions and their particular solutions for the Laplace operator within local stencils to simultaneously approximate both the solution and its Laplacian. Numerical experiments show that significantly improves the accuracy of LMAPS.</div></div>","PeriodicalId":55497,"journal":{"name":"Applied Mathematics Letters","volume":"164 ","pages":"Article 109471"},"PeriodicalIF":2.9000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Localized Hermite method of approximate particular solutions for solving the Poisson equation\",\"authors\":\"Kwesi Acheampong,&nbsp;Huiqing Zhu\",\"doi\":\"10.1016/j.aml.2025.109471\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, we propose a localized Hermite method of approximate particular solutions (LHMAPS) for solving the Poisson equation. Unlike the localized method of approximate particular solutions (LMAPS) that approximates only function values of the solution in different local neighborhoods of collocation nodes by using particular solutions of radial basis functions, the proposed method employs mixed basis functions, combining radial basis functions and their particular solutions for the Laplace operator within local stencils to simultaneously approximate both the solution and its Laplacian. Numerical experiments show that significantly improves the accuracy of LMAPS.</div></div>\",\"PeriodicalId\":55497,\"journal\":{\"name\":\"Applied Mathematics Letters\",\"volume\":\"164 \",\"pages\":\"Article 109471\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-01-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Mathematics Letters\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0893965925000187\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics Letters","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0893965925000187","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了求解泊松方程的近似特解的局部Hermite法。与局部近似特解方法(LMAPS)不同,该方法仅利用径向基函数的特解逼近配置节点不同局部邻域解的函数值,而采用混合基函数,结合局部模板内的径向基函数及其拉普拉斯算子的特解,同时逼近解及其拉普拉斯算子。数值实验表明,该方法显著提高了LMAPS的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Localized Hermite method of approximate particular solutions for solving the Poisson equation
In this paper, we propose a localized Hermite method of approximate particular solutions (LHMAPS) for solving the Poisson equation. Unlike the localized method of approximate particular solutions (LMAPS) that approximates only function values of the solution in different local neighborhoods of collocation nodes by using particular solutions of radial basis functions, the proposed method employs mixed basis functions, combining radial basis functions and their particular solutions for the Laplace operator within local stencils to simultaneously approximate both the solution and its Laplacian. Numerical experiments show that significantly improves the accuracy of LMAPS.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Mathematics Letters
Applied Mathematics Letters 数学-应用数学
CiteScore
7.70
自引率
5.40%
发文量
347
审稿时长
10 days
期刊介绍: The purpose of Applied Mathematics Letters is to provide a means of rapid publication for important but brief applied mathematical papers. The brief descriptions of any work involving a novel application or utilization of mathematics, or a development in the methodology of applied mathematics is a potential contribution for this journal. This journal''s focus is on applied mathematics topics based on differential equations and linear algebra. Priority will be given to submissions that are likely to appeal to a wide audience.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信