基于移位pod深度学习方法的野火模型参数化降阶

IF 2.1 3区 数学 Q2 MATHEMATICS, APPLIED
Shubhaditya Burela, Philipp Krah, Julius Reiss
{"title":"基于移位pod深度学习方法的野火模型参数化降阶","authors":"Shubhaditya Burela,&nbsp;Philipp Krah,&nbsp;Julius Reiss","doi":"10.1007/s10444-025-10220-4","DOIUrl":null,"url":null,"abstract":"<div><p>Parametric model order reduction techniques often struggle to accurately represent transport-dominated phenomena due to a slowly decaying Kolmogorov <i>n</i>-width. To address this challenge, we propose a non-intrusive, data-driven methodology that combines the shifted proper orthogonal decomposition (POD) with deep learning. Specifically, the shifted POD technique is utilized to derive a high-fidelity, low-dimensional model of the flow, which is subsequently utilized as input to a deep learning framework to forecast the flow dynamics under various temporal and parameter conditions. The efficacy of the proposed approach is demonstrated through the analysis of one- and two-dimensional wildland fire models with varying reaction rates, and its error is compared with the error of other similar methods. The results indicate that the proposed approach yields reliable results within the percent range, while also enabling rapid prediction of system states within seconds.</p></div>","PeriodicalId":50869,"journal":{"name":"Advances in Computational Mathematics","volume":"51 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10444-025-10220-4.pdf","citationCount":"0","resultStr":"{\"title\":\"Parametric model order reduction for a wildland fire model via the shifted POD-based deep learning method\",\"authors\":\"Shubhaditya Burela,&nbsp;Philipp Krah,&nbsp;Julius Reiss\",\"doi\":\"10.1007/s10444-025-10220-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Parametric model order reduction techniques often struggle to accurately represent transport-dominated phenomena due to a slowly decaying Kolmogorov <i>n</i>-width. To address this challenge, we propose a non-intrusive, data-driven methodology that combines the shifted proper orthogonal decomposition (POD) with deep learning. Specifically, the shifted POD technique is utilized to derive a high-fidelity, low-dimensional model of the flow, which is subsequently utilized as input to a deep learning framework to forecast the flow dynamics under various temporal and parameter conditions. The efficacy of the proposed approach is demonstrated through the analysis of one- and two-dimensional wildland fire models with varying reaction rates, and its error is compared with the error of other similar methods. The results indicate that the proposed approach yields reliable results within the percent range, while also enabling rapid prediction of system states within seconds.</p></div>\",\"PeriodicalId\":50869,\"journal\":{\"name\":\"Advances in Computational Mathematics\",\"volume\":\"51 1\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-02-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10444-025-10220-4.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Computational Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10444-025-10220-4\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Computational Mathematics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10444-025-10220-4","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

由于柯尔莫哥洛夫n-宽度的缓慢衰减,参数化模型降阶技术常常难以准确地表示输运主导的现象。为了应对这一挑战,我们提出了一种非侵入式的数据驱动方法,该方法将移位正交分解(POD)与深度学习相结合。具体而言,利用位移POD技术推导出高保真、低维的流动模型,随后将其作为深度学习框架的输入,以预测各种时间和参数条件下的流动动力学。通过对不同反应速率的一维和二维野火模型的分析,验证了该方法的有效性,并与其他类似方法的误差进行了比较。结果表明,该方法在百分比范围内产生可靠的结果,同时也能在几秒内快速预测系统状态。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Parametric model order reduction for a wildland fire model via the shifted POD-based deep learning method

Parametric model order reduction techniques often struggle to accurately represent transport-dominated phenomena due to a slowly decaying Kolmogorov n-width. To address this challenge, we propose a non-intrusive, data-driven methodology that combines the shifted proper orthogonal decomposition (POD) with deep learning. Specifically, the shifted POD technique is utilized to derive a high-fidelity, low-dimensional model of the flow, which is subsequently utilized as input to a deep learning framework to forecast the flow dynamics under various temporal and parameter conditions. The efficacy of the proposed approach is demonstrated through the analysis of one- and two-dimensional wildland fire models with varying reaction rates, and its error is compared with the error of other similar methods. The results indicate that the proposed approach yields reliable results within the percent range, while also enabling rapid prediction of system states within seconds.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.00
自引率
5.90%
发文量
68
审稿时长
3 months
期刊介绍: Advances in Computational Mathematics publishes high quality, accessible and original articles at the forefront of computational and applied mathematics, with a clear potential for impact across the sciences. The journal emphasizes three core areas: approximation theory and computational geometry; numerical analysis, modelling and simulation; imaging, signal processing and data analysis. This journal welcomes papers that are accessible to a broad audience in the mathematical sciences and that show either an advance in computational methodology or a novel scientific application area, or both. Methods papers should rely on rigorous analysis and/or convincing numerical studies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信