Bowei Li, Ling Feng, Rakia Chouari, Sofia Samoili, Stefanos Giannakis
{"title":"微量金属诱发饮用水生物膜微生物风险和耐药性","authors":"Bowei Li, Ling Feng, Rakia Chouari, Sofia Samoili, Stefanos Giannakis","doi":"10.1038/s41545-025-00436-8","DOIUrl":null,"url":null,"abstract":"<p>This study investigated the changes in water quality and microbial risks resulting from trace metal pollutants in stagnant drinking water conditions using a 168-h experimental simulation and a metagenomic approach. The results showed that Fe(III) increased the water turbidity. Stagnation also caused significant biofilm growth, which was increased by trace metal pollutants, resulting in a higher production of extracellular polymeric substances (EPS). Adaptive mechanisms of bacterial communities dominated by <i>Pseudomonadota</i> in response to trace metal pollutant stress were discovered. Pathogenic bacteria, particularly <i>Salmonella enterica</i> and <i>Pseudomonas aeruginosa</i>, were found in stagnant drinking water, potentially exacerbated by Al(III). The overall exposure risk of antibiotic resistance genes (ARGs) increased, whereas Fe(III) enhanced the co-occurrence of ARGs and pathogens, potentially leading to serious hidden microbial risks. This study reveals imperceptible microbial risks posed by trace metal pollutants in stagnant drinking water, providing scientific warning and advice for drinking water safety.</p>","PeriodicalId":19375,"journal":{"name":"npj Clean Water","volume":"38 1","pages":""},"PeriodicalIF":10.4000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Trace metals induce microbial risk and antimicrobial resistance in biofilm in drinking water\",\"authors\":\"Bowei Li, Ling Feng, Rakia Chouari, Sofia Samoili, Stefanos Giannakis\",\"doi\":\"10.1038/s41545-025-00436-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This study investigated the changes in water quality and microbial risks resulting from trace metal pollutants in stagnant drinking water conditions using a 168-h experimental simulation and a metagenomic approach. The results showed that Fe(III) increased the water turbidity. Stagnation also caused significant biofilm growth, which was increased by trace metal pollutants, resulting in a higher production of extracellular polymeric substances (EPS). Adaptive mechanisms of bacterial communities dominated by <i>Pseudomonadota</i> in response to trace metal pollutant stress were discovered. Pathogenic bacteria, particularly <i>Salmonella enterica</i> and <i>Pseudomonas aeruginosa</i>, were found in stagnant drinking water, potentially exacerbated by Al(III). The overall exposure risk of antibiotic resistance genes (ARGs) increased, whereas Fe(III) enhanced the co-occurrence of ARGs and pathogens, potentially leading to serious hidden microbial risks. This study reveals imperceptible microbial risks posed by trace metal pollutants in stagnant drinking water, providing scientific warning and advice for drinking water safety.</p>\",\"PeriodicalId\":19375,\"journal\":{\"name\":\"npj Clean Water\",\"volume\":\"38 1\",\"pages\":\"\"},\"PeriodicalIF\":10.4000,\"publicationDate\":\"2025-02-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Clean Water\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1038/s41545-025-00436-8\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Clean Water","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1038/s41545-025-00436-8","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Trace metals induce microbial risk and antimicrobial resistance in biofilm in drinking water
This study investigated the changes in water quality and microbial risks resulting from trace metal pollutants in stagnant drinking water conditions using a 168-h experimental simulation and a metagenomic approach. The results showed that Fe(III) increased the water turbidity. Stagnation also caused significant biofilm growth, which was increased by trace metal pollutants, resulting in a higher production of extracellular polymeric substances (EPS). Adaptive mechanisms of bacterial communities dominated by Pseudomonadota in response to trace metal pollutant stress were discovered. Pathogenic bacteria, particularly Salmonella enterica and Pseudomonas aeruginosa, were found in stagnant drinking water, potentially exacerbated by Al(III). The overall exposure risk of antibiotic resistance genes (ARGs) increased, whereas Fe(III) enhanced the co-occurrence of ARGs and pathogens, potentially leading to serious hidden microbial risks. This study reveals imperceptible microbial risks posed by trace metal pollutants in stagnant drinking water, providing scientific warning and advice for drinking water safety.
npj Clean WaterEnvironmental Science-Water Science and Technology
CiteScore
15.30
自引率
2.60%
发文量
61
审稿时长
5 weeks
期刊介绍:
npj Clean Water publishes high-quality papers that report cutting-edge science, technology, applications, policies, and societal issues contributing to a more sustainable supply of clean water. The journal's publications may also support and accelerate the achievement of Sustainable Development Goal 6, which focuses on clean water and sanitation.