Harsh Vardhan Upadhyay, Sanket Tripathy, Ting Rei Tan, Baladitya Suri and Athreya Shankar
{"title":"可扩展的高维多部纠缠与捕获离子","authors":"Harsh Vardhan Upadhyay, Sanket Tripathy, Ting Rei Tan, Baladitya Suri and Athreya Shankar","doi":"10.1088/2058-9565/adac06","DOIUrl":null,"url":null,"abstract":"We propose a protocol for the preparation of generalized Greenberger–Horne–Zeilinger (GHZ) states of N atoms each with d = 3 or 4 internal levels. We generalize the celebrated one-axis twisting (OAT) Hamiltonian for N qubits to qudits by including OAT interactions of equal strengths between every pair of qudit levels, a protocol we call as balanced OAT (BOAT). Analogous to OAT for qubits, we find that starting from a product state of an arbitrary number of atoms N, dynamics under BOAT leads to the formation of GHZ states for qutrits (d = 3) and ququarts (d = 4). While BOAT could potentially be realized on several platforms where all-to-all coupling is possible, here we propose specific implementations using trapped ion systems. We show that preparing these states with fidelity above a threshold value rules out lower dimensional entanglement than that of the generalized GHZ states. For qutrits, we also propose a protocol to bound the fidelity that requires only global addressing of the ion crystal and single-shot readout of one of the levels. Our results open a path for the scalable generation and certification of high-dimensional multipartite entanglement on current atom-based quantum hardware.","PeriodicalId":20821,"journal":{"name":"Quantum Science and Technology","volume":"54 1","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Scalable high-dimensional multipartite entanglement with trapped ions\",\"authors\":\"Harsh Vardhan Upadhyay, Sanket Tripathy, Ting Rei Tan, Baladitya Suri and Athreya Shankar\",\"doi\":\"10.1088/2058-9565/adac06\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a protocol for the preparation of generalized Greenberger–Horne–Zeilinger (GHZ) states of N atoms each with d = 3 or 4 internal levels. We generalize the celebrated one-axis twisting (OAT) Hamiltonian for N qubits to qudits by including OAT interactions of equal strengths between every pair of qudit levels, a protocol we call as balanced OAT (BOAT). Analogous to OAT for qubits, we find that starting from a product state of an arbitrary number of atoms N, dynamics under BOAT leads to the formation of GHZ states for qutrits (d = 3) and ququarts (d = 4). While BOAT could potentially be realized on several platforms where all-to-all coupling is possible, here we propose specific implementations using trapped ion systems. We show that preparing these states with fidelity above a threshold value rules out lower dimensional entanglement than that of the generalized GHZ states. For qutrits, we also propose a protocol to bound the fidelity that requires only global addressing of the ion crystal and single-shot readout of one of the levels. Our results open a path for the scalable generation and certification of high-dimensional multipartite entanglement on current atom-based quantum hardware.\",\"PeriodicalId\":20821,\"journal\":{\"name\":\"Quantum Science and Technology\",\"volume\":\"54 1\",\"pages\":\"\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2025-01-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quantum Science and Technology\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/2058-9565/adac06\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Science and Technology","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/2058-9565/adac06","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Scalable high-dimensional multipartite entanglement with trapped ions
We propose a protocol for the preparation of generalized Greenberger–Horne–Zeilinger (GHZ) states of N atoms each with d = 3 or 4 internal levels. We generalize the celebrated one-axis twisting (OAT) Hamiltonian for N qubits to qudits by including OAT interactions of equal strengths between every pair of qudit levels, a protocol we call as balanced OAT (BOAT). Analogous to OAT for qubits, we find that starting from a product state of an arbitrary number of atoms N, dynamics under BOAT leads to the formation of GHZ states for qutrits (d = 3) and ququarts (d = 4). While BOAT could potentially be realized on several platforms where all-to-all coupling is possible, here we propose specific implementations using trapped ion systems. We show that preparing these states with fidelity above a threshold value rules out lower dimensional entanglement than that of the generalized GHZ states. For qutrits, we also propose a protocol to bound the fidelity that requires only global addressing of the ion crystal and single-shot readout of one of the levels. Our results open a path for the scalable generation and certification of high-dimensional multipartite entanglement on current atom-based quantum hardware.
期刊介绍:
Driven by advances in technology and experimental capability, the last decade has seen the emergence of quantum technology: a new praxis for controlling the quantum world. It is now possible to engineer complex, multi-component systems that merge the once distinct fields of quantum optics and condensed matter physics.
Quantum Science and Technology is a new multidisciplinary, electronic-only journal, devoted to publishing research of the highest quality and impact covering theoretical and experimental advances in the fundamental science and application of all quantum-enabled technologies.