基于可解释机器学习方法的环境数据呼吸道病毒风险模型的开发

IF 8.4 1区 地球科学 Q1 METEOROLOGY & ATMOSPHERIC SCIENCES
Shuting Shi, Haowen Lin, Leiming Jiang, Zhiqi Zeng, ChuiXu Lin, Pei Li, Yinghua Li, Zifeng Yang
{"title":"基于可解释机器学习方法的环境数据呼吸道病毒风险模型的开发","authors":"Shuting Shi, Haowen Lin, Leiming Jiang, Zhiqi Zeng, ChuiXu Lin, Pei Li, Yinghua Li, Zifeng Yang","doi":"10.1038/s41612-025-00894-4","DOIUrl":null,"url":null,"abstract":"<p>In recent years, numerous studies have explored the relationship between atmospheric conditions and respiratory viral infections. However, these investigations have faced certain limitations, such as the use of modestly sized datasets, a restricted geographical focus, and an emphasis on a limited number of respiratory pathogens. This study aimed to develop a nationwide respiratory virus infection risk prediction model through machine learning approach. We utilized the CRFC algorithm, a random forest-based method for multi-label classification, to predict the presence of various respiratory viruses. The model integrated binary classification outcomes for each virus category and incorporated air quality and meteorological data to enhance its accuracy. The data was collected from 31 regions in China between 2016 and 2021, encompassing pathogen detection, air quality indices, and meteorological measurements. The model’s performance was evaluated using ROC curves, AUC scores, and precision-recall curves. Our model demonstrated robust performance across various metrics, with an average overall accuracy of 0.76, macro sensitivity of 0.75, macro precision of 0.77, and an average AUC score of 0.9. The SHAP framework was employed to interpret the model’s predictions, revealing significant contributions from parameters such as age, NO<sub>2</sub> levels, and meteorological conditions. Our model provides a reliable tool for predicting respiratory virus risks, with a comprehensive integration of environmental and clinical data. The model’s performance metrics indicate its potential utility in clinical decision-making and public health planning. Future work will focus on refining the model and expanding its applicability to diverse populations and settings.</p>","PeriodicalId":19438,"journal":{"name":"npj Climate and Atmospheric Science","volume":"77 2 1","pages":""},"PeriodicalIF":8.4000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of a respiratory virus risk model with environmental data based on interpretable machine learning methods\",\"authors\":\"Shuting Shi, Haowen Lin, Leiming Jiang, Zhiqi Zeng, ChuiXu Lin, Pei Li, Yinghua Li, Zifeng Yang\",\"doi\":\"10.1038/s41612-025-00894-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In recent years, numerous studies have explored the relationship between atmospheric conditions and respiratory viral infections. However, these investigations have faced certain limitations, such as the use of modestly sized datasets, a restricted geographical focus, and an emphasis on a limited number of respiratory pathogens. This study aimed to develop a nationwide respiratory virus infection risk prediction model through machine learning approach. We utilized the CRFC algorithm, a random forest-based method for multi-label classification, to predict the presence of various respiratory viruses. The model integrated binary classification outcomes for each virus category and incorporated air quality and meteorological data to enhance its accuracy. The data was collected from 31 regions in China between 2016 and 2021, encompassing pathogen detection, air quality indices, and meteorological measurements. The model’s performance was evaluated using ROC curves, AUC scores, and precision-recall curves. Our model demonstrated robust performance across various metrics, with an average overall accuracy of 0.76, macro sensitivity of 0.75, macro precision of 0.77, and an average AUC score of 0.9. The SHAP framework was employed to interpret the model’s predictions, revealing significant contributions from parameters such as age, NO<sub>2</sub> levels, and meteorological conditions. Our model provides a reliable tool for predicting respiratory virus risks, with a comprehensive integration of environmental and clinical data. The model’s performance metrics indicate its potential utility in clinical decision-making and public health planning. Future work will focus on refining the model and expanding its applicability to diverse populations and settings.</p>\",\"PeriodicalId\":19438,\"journal\":{\"name\":\"npj Climate and Atmospheric Science\",\"volume\":\"77 2 1\",\"pages\":\"\"},\"PeriodicalIF\":8.4000,\"publicationDate\":\"2025-02-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Climate and Atmospheric Science\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1038/s41612-025-00894-4\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Climate and Atmospheric Science","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1038/s41612-025-00894-4","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

近年来,许多研究探索了大气条件与呼吸道病毒感染之间的关系。然而,这些调查面临着一定的局限性,例如使用适度规模的数据集,有限的地理焦点,以及强调有限数量的呼吸道病原体。本研究旨在通过机器学习方法建立全国呼吸道病毒感染风险预测模型。我们利用CRFC算法,一种基于随机森林的多标签分类方法,来预测各种呼吸道病毒的存在。该模型综合了每个病毒类别的二元分类结果,并纳入了空气质量和气象数据,以提高其准确性。这些数据是在2016年至2021年间从中国31个地区收集的,包括病原体检测、空气质量指数和气象测量。使用ROC曲线、AUC分数和精确召回率曲线来评估模型的性能。我们的模型在各种指标上表现出稳健的性能,平均总体精度为0.76,宏观灵敏度为0.75,宏观精度为0.77,平均AUC得分为0.9。SHAP框架被用来解释模型的预测,揭示了年龄、二氧化氮水平和气象条件等参数的重要贡献。我们的模型综合了环境和临床数据,为预测呼吸道病毒风险提供了可靠的工具。该模型的性能指标表明其在临床决策和公共卫生规划中的潜在效用。未来的工作将侧重于完善该模型并扩大其对不同人群和环境的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Development of a respiratory virus risk model with environmental data based on interpretable machine learning methods

Development of a respiratory virus risk model with environmental data based on interpretable machine learning methods

In recent years, numerous studies have explored the relationship between atmospheric conditions and respiratory viral infections. However, these investigations have faced certain limitations, such as the use of modestly sized datasets, a restricted geographical focus, and an emphasis on a limited number of respiratory pathogens. This study aimed to develop a nationwide respiratory virus infection risk prediction model through machine learning approach. We utilized the CRFC algorithm, a random forest-based method for multi-label classification, to predict the presence of various respiratory viruses. The model integrated binary classification outcomes for each virus category and incorporated air quality and meteorological data to enhance its accuracy. The data was collected from 31 regions in China between 2016 and 2021, encompassing pathogen detection, air quality indices, and meteorological measurements. The model’s performance was evaluated using ROC curves, AUC scores, and precision-recall curves. Our model demonstrated robust performance across various metrics, with an average overall accuracy of 0.76, macro sensitivity of 0.75, macro precision of 0.77, and an average AUC score of 0.9. The SHAP framework was employed to interpret the model’s predictions, revealing significant contributions from parameters such as age, NO2 levels, and meteorological conditions. Our model provides a reliable tool for predicting respiratory virus risks, with a comprehensive integration of environmental and clinical data. The model’s performance metrics indicate its potential utility in clinical decision-making and public health planning. Future work will focus on refining the model and expanding its applicability to diverse populations and settings.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
npj Climate and Atmospheric Science
npj Climate and Atmospheric Science Earth and Planetary Sciences-Atmospheric Science
CiteScore
8.80
自引率
3.30%
发文量
87
审稿时长
21 weeks
期刊介绍: npj Climate and Atmospheric Science is an open-access journal encompassing the relevant physical, chemical, and biological aspects of atmospheric and climate science. The journal places particular emphasis on regional studies that unveil new insights into specific localities, including examinations of local atmospheric composition, such as aerosols. The range of topics covered by the journal includes climate dynamics, climate variability, weather and climate prediction, climate change, ocean dynamics, weather extremes, air pollution, atmospheric chemistry (including aerosols), the hydrological cycle, and atmosphere–ocean and atmosphere–land interactions. The journal welcomes studies employing a diverse array of methods, including numerical and statistical modeling, the development and application of in situ observational techniques, remote sensing, and the development or evaluation of new reanalyses.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信