具有优异烧结活性的高熵钛酸稀土纳米粉体的简易合成

IF 6.3 2区 材料科学 Q2 CHEMISTRY, PHYSICAL
Chengguang Lou , Xujing Fu , Jingwen Lv , Guo Zhang , Qiang Tian , Shuai Zhang , Wenjin Li , Xinghua Su
{"title":"具有优异烧结活性的高熵钛酸稀土纳米粉体的简易合成","authors":"Chengguang Lou ,&nbsp;Xujing Fu ,&nbsp;Jingwen Lv ,&nbsp;Guo Zhang ,&nbsp;Qiang Tian ,&nbsp;Shuai Zhang ,&nbsp;Wenjin Li ,&nbsp;Xinghua Su","doi":"10.1016/j.jallcom.2025.178976","DOIUrl":null,"url":null,"abstract":"<div><div>High-entropy rare earth titanate (HET) nanopowders with good dispersion were successfully synthesized by a simple polyacrylamide gel method. The particle size and agglomeration degree of the HET nanopowders were greatly influenced by the mole ratio of acrylamide to titanium (AM/Ti) and calcination temperature. Moreover, the synthesis temperature was decreased with the increase of the mole ratio of AM/Ti. The as-synthesized HET nanopowders possessed high sintering activity, which could be sintered into fully dense bulks at 1500 ℃ for 2 h. The sintered HET bulks exhibited the high hardness of 13.45 GPa, large Young’s modulus of 254 GPa, and relatively low thermal conductivity of 2.14–2.29 W/(m·K) in the temperature range of 25–400 ℃. This study provides a facile synthesis method for producing HET nanopowders with excellent sinterability.</div></div>","PeriodicalId":344,"journal":{"name":"Journal of Alloys and Compounds","volume":"1016 ","pages":"Article 178976"},"PeriodicalIF":6.3000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Facile synthesis of high-entropy rare earth titanate nanopowders with excellent sintering activity\",\"authors\":\"Chengguang Lou ,&nbsp;Xujing Fu ,&nbsp;Jingwen Lv ,&nbsp;Guo Zhang ,&nbsp;Qiang Tian ,&nbsp;Shuai Zhang ,&nbsp;Wenjin Li ,&nbsp;Xinghua Su\",\"doi\":\"10.1016/j.jallcom.2025.178976\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>High-entropy rare earth titanate (HET) nanopowders with good dispersion were successfully synthesized by a simple polyacrylamide gel method. The particle size and agglomeration degree of the HET nanopowders were greatly influenced by the mole ratio of acrylamide to titanium (AM/Ti) and calcination temperature. Moreover, the synthesis temperature was decreased with the increase of the mole ratio of AM/Ti. The as-synthesized HET nanopowders possessed high sintering activity, which could be sintered into fully dense bulks at 1500 ℃ for 2 h. The sintered HET bulks exhibited the high hardness of 13.45 GPa, large Young’s modulus of 254 GPa, and relatively low thermal conductivity of 2.14–2.29 W/(m·K) in the temperature range of 25–400 ℃. This study provides a facile synthesis method for producing HET nanopowders with excellent sinterability.</div></div>\",\"PeriodicalId\":344,\"journal\":{\"name\":\"Journal of Alloys and Compounds\",\"volume\":\"1016 \",\"pages\":\"Article 178976\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2025-02-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Alloys and Compounds\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0925838825005341\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Alloys and Compounds","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925838825005341","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

采用聚丙烯酰胺凝胶法制备了分散性良好的高熵钛酸稀土纳米粉体。丙烯酰胺与钛(AM/Ti)的摩尔比和煅烧温度对纳米热电热粉体的粒径和团聚度有较大影响。随着AM/Ti摩尔比的增大,合成温度降低。制备的纳米热电晶体具有较高的烧结活性,在1500℃下烧结2 h即可烧结成致密体,烧结后的热电晶体在25 ~ 400℃范围内具有较高的硬度(13.45 GPa)、较大的杨氏模量(254 GPa)和较低的导热系数(2.14 ~ 2.29 W/(m·K))。本研究提供了一种简便的合成方法,可制备出烧结性能优良的高温高压纳米粉体。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Facile synthesis of high-entropy rare earth titanate nanopowders with excellent sintering activity
High-entropy rare earth titanate (HET) nanopowders with good dispersion were successfully synthesized by a simple polyacrylamide gel method. The particle size and agglomeration degree of the HET nanopowders were greatly influenced by the mole ratio of acrylamide to titanium (AM/Ti) and calcination temperature. Moreover, the synthesis temperature was decreased with the increase of the mole ratio of AM/Ti. The as-synthesized HET nanopowders possessed high sintering activity, which could be sintered into fully dense bulks at 1500 ℃ for 2 h. The sintered HET bulks exhibited the high hardness of 13.45 GPa, large Young’s modulus of 254 GPa, and relatively low thermal conductivity of 2.14–2.29 W/(m·K) in the temperature range of 25–400 ℃. This study provides a facile synthesis method for producing HET nanopowders with excellent sinterability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Alloys and Compounds
Journal of Alloys and Compounds 工程技术-材料科学:综合
CiteScore
11.10
自引率
14.50%
发文量
5146
审稿时长
67 days
期刊介绍: The Journal of Alloys and Compounds is intended to serve as an international medium for the publication of work on solid materials comprising compounds as well as alloys. Its great strength lies in the diversity of discipline which it encompasses, drawing together results from materials science, solid-state chemistry and physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信