通过层间应变工程在多层陶瓷电容器中实现超高效率的巨大储能密度

IF 15.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Ying Yang, Ke Xu, Bin Yang, Xu Hou, Zhanming Dou, Yuhong Li, Zihao Zheng, Gengguang Luo, Nengneng Luo, Guanglong Ge, Jiwei Zhai, Yuanyuan Fan, Jing Wang, Haoming Yang, Yao Zhang, Jing Wang, Changyuan Wang, Shenglin Jiang, Kanghua Li, Jinming Guo, Houbing Huang, Guangzu Zhang
{"title":"通过层间应变工程在多层陶瓷电容器中实现超高效率的巨大储能密度","authors":"Ying Yang, Ke Xu, Bin Yang, Xu Hou, Zhanming Dou, Yuhong Li, Zihao Zheng, Gengguang Luo, Nengneng Luo, Guanglong Ge, Jiwei Zhai, Yuanyuan Fan, Jing Wang, Haoming Yang, Yao Zhang, Jing Wang, Changyuan Wang, Shenglin Jiang, Kanghua Li, Jinming Guo, Houbing Huang, Guangzu Zhang","doi":"10.1038/s41467-025-56605-3","DOIUrl":null,"url":null,"abstract":"<p>Dielectric capacitors with high energy storage performance are highly desired for advanced power electronic devices and systems. Even though strenuous efforts have been dedicated to closing the gap of energy storage density between the dielectric capacitors and the electrochemical capacitors/batteries, a single-minded pursuit of high energy density without a near-zero energy loss for ultrahigh energy efficiency as the grantee is in vain. Herein, for the purpose of decoupling the inherent conflicts between high polarization and low electric hysteresis (loss), and achieving high energy storage density and efficiency simultaneously in multilayer ceramic capacitors (MLCCs), we propose an interlaminar strain engineering strategy to modulate the domain structure and manipulate the polarization behavior of the dielectric mediums. With a heterogeneous layered structure consisting of different antiferroelectric ceramics [(Pb<sub>0.9</sub>Ba<sub>0.04</sub>La<sub>0.04</sub>)(Zr<sub>0.65</sub>Sn<sub>0.3</sub>Ti<sub>0.05</sub>)O<sub>3</sub>/(Pb<sub>0.95</sub>Ba<sub>0.02</sub>La<sub>0.02</sub>)(Zr<sub>0.6</sub>Sn<sub>0.4</sub>)O<sub>3</sub>/(Pb<sub>0.92</sub>Ca<sub>0.06</sub>La<sub>0.02</sub>)(Zr<sub>0.6</sub>Sn<sub>0.4</sub>)<sub>0.995</sub>O<sub>3</sub>], our MLCC exhibits a giant recoverable energy density of 22.0 J cm<sup>−3</sup> with an ultrahigh energy efficiency of 96.1%. Combined with the favorable temperature and frequency stabilities and the high antifatigue property, this work provides a strain engineering paradigm for designing MLCCs for high-power energy storage and conversion systems.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"53 1","pages":""},"PeriodicalIF":15.7000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Giant energy storage density with ultrahigh efficiency in multilayer ceramic capacitors via interlaminar strain engineering\",\"authors\":\"Ying Yang, Ke Xu, Bin Yang, Xu Hou, Zhanming Dou, Yuhong Li, Zihao Zheng, Gengguang Luo, Nengneng Luo, Guanglong Ge, Jiwei Zhai, Yuanyuan Fan, Jing Wang, Haoming Yang, Yao Zhang, Jing Wang, Changyuan Wang, Shenglin Jiang, Kanghua Li, Jinming Guo, Houbing Huang, Guangzu Zhang\",\"doi\":\"10.1038/s41467-025-56605-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Dielectric capacitors with high energy storage performance are highly desired for advanced power electronic devices and systems. Even though strenuous efforts have been dedicated to closing the gap of energy storage density between the dielectric capacitors and the electrochemical capacitors/batteries, a single-minded pursuit of high energy density without a near-zero energy loss for ultrahigh energy efficiency as the grantee is in vain. Herein, for the purpose of decoupling the inherent conflicts between high polarization and low electric hysteresis (loss), and achieving high energy storage density and efficiency simultaneously in multilayer ceramic capacitors (MLCCs), we propose an interlaminar strain engineering strategy to modulate the domain structure and manipulate the polarization behavior of the dielectric mediums. With a heterogeneous layered structure consisting of different antiferroelectric ceramics [(Pb<sub>0.9</sub>Ba<sub>0.04</sub>La<sub>0.04</sub>)(Zr<sub>0.65</sub>Sn<sub>0.3</sub>Ti<sub>0.05</sub>)O<sub>3</sub>/(Pb<sub>0.95</sub>Ba<sub>0.02</sub>La<sub>0.02</sub>)(Zr<sub>0.6</sub>Sn<sub>0.4</sub>)O<sub>3</sub>/(Pb<sub>0.92</sub>Ca<sub>0.06</sub>La<sub>0.02</sub>)(Zr<sub>0.6</sub>Sn<sub>0.4</sub>)<sub>0.995</sub>O<sub>3</sub>], our MLCC exhibits a giant recoverable energy density of 22.0 J cm<sup>−3</sup> with an ultrahigh energy efficiency of 96.1%. Combined with the favorable temperature and frequency stabilities and the high antifatigue property, this work provides a strain engineering paradigm for designing MLCCs for high-power energy storage and conversion systems.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"53 1\",\"pages\":\"\"},\"PeriodicalIF\":15.7000,\"publicationDate\":\"2025-02-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-025-56605-3\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-56605-3","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

具有高能量存储性能的介质电容器是先进电力电子器件和系统所迫切需要的。尽管人们一直在努力缩小介电电容器和电化学电容器/电池之间的能量存储密度差距,但一味追求高能量密度而不产生接近于零的能量损失以获得超高的能量效率是徒劳的。为了解决多层陶瓷电容器(mlcc)中高极化和低电滞(损耗)之间的固有矛盾,同时实现高储能密度和高效率,我们提出了一种层间应变工程策略来调节畴结构和操纵介电介质的极化行为。由不同反铁电陶瓷[(Pb0.9Ba0.04La0.04)(Zr0.65Sn0.3Ti0.05)O3/(Pb0.95Ba0.02La0.02)(Zr0.6Sn0.4)O3/(Pb0.92Ca0.06La0.02)(Zr0.6Sn0.4) 0.9950 O3]组成的非均质层状结构,使MLCC具有22.0 J cm−3的巨大可回收能量密度和96.1%的超高能量效率。结合良好的温度和频率稳定性以及高抗疲劳性能,本工作为大功率储能和转换系统的mlcc设计提供了应变工程范式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Giant energy storage density with ultrahigh efficiency in multilayer ceramic capacitors via interlaminar strain engineering

Giant energy storage density with ultrahigh efficiency in multilayer ceramic capacitors via interlaminar strain engineering

Dielectric capacitors with high energy storage performance are highly desired for advanced power electronic devices and systems. Even though strenuous efforts have been dedicated to closing the gap of energy storage density between the dielectric capacitors and the electrochemical capacitors/batteries, a single-minded pursuit of high energy density without a near-zero energy loss for ultrahigh energy efficiency as the grantee is in vain. Herein, for the purpose of decoupling the inherent conflicts between high polarization and low electric hysteresis (loss), and achieving high energy storage density and efficiency simultaneously in multilayer ceramic capacitors (MLCCs), we propose an interlaminar strain engineering strategy to modulate the domain structure and manipulate the polarization behavior of the dielectric mediums. With a heterogeneous layered structure consisting of different antiferroelectric ceramics [(Pb0.9Ba0.04La0.04)(Zr0.65Sn0.3Ti0.05)O3/(Pb0.95Ba0.02La0.02)(Zr0.6Sn0.4)O3/(Pb0.92Ca0.06La0.02)(Zr0.6Sn0.4)0.995O3], our MLCC exhibits a giant recoverable energy density of 22.0 J cm−3 with an ultrahigh energy efficiency of 96.1%. Combined with the favorable temperature and frequency stabilities and the high antifatigue property, this work provides a strain engineering paradigm for designing MLCCs for high-power energy storage and conversion systems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信