Amis Sharma, Yuhua Li, Madhava Krishna Prasad, Wai Lok Ho, Sai Tak Chu, Ivan Valerievich Borzenets
{"title":"通过微环谐振器增强拉曼信号","authors":"Amis Sharma, Yuhua Li, Madhava Krishna Prasad, Wai Lok Ho, Sai Tak Chu, Ivan Valerievich Borzenets","doi":"10.1063/5.0245521","DOIUrl":null,"url":null,"abstract":"This study presents the use of micro-ring resonator (MRR) devices to extract and enhance nonlinear signals. MRRs “trap” incoming light and, therefore, have been shown to achieve extremely high local intensities of light. Thus, they can be used to facilitate highly nonlinear optical signals that are usually weak in intensity and require high excitation power. By embedding materials that host nonlinear optical processes inside the MRR, we expect to observe an enhancement in the strength of the nonlinear optical signals. This concept is demonstrated here by extracting the Raman signature of graphene that is placed inside a MRR device. A highly doped silica MRR featuring an optical bus waveguide coupled to a ring tuned to near-infrared wavelengths is used. Raman signal with an excitation wavelength of 522 nm via third-harmonic generation inside the MRR is observed. The higher-order Raman signal of the embedded graphene is also observed at the 1597.6 nm excitation wavelength. This work demonstrates the feasibility of the MRR as a nonlinear signal enhancer using high-Q MRR device setups.","PeriodicalId":8094,"journal":{"name":"Applied Physics Letters","volume":"63 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Raman signal enhancement via a micro-ring resonator\",\"authors\":\"Amis Sharma, Yuhua Li, Madhava Krishna Prasad, Wai Lok Ho, Sai Tak Chu, Ivan Valerievich Borzenets\",\"doi\":\"10.1063/5.0245521\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study presents the use of micro-ring resonator (MRR) devices to extract and enhance nonlinear signals. MRRs “trap” incoming light and, therefore, have been shown to achieve extremely high local intensities of light. Thus, they can be used to facilitate highly nonlinear optical signals that are usually weak in intensity and require high excitation power. By embedding materials that host nonlinear optical processes inside the MRR, we expect to observe an enhancement in the strength of the nonlinear optical signals. This concept is demonstrated here by extracting the Raman signature of graphene that is placed inside a MRR device. A highly doped silica MRR featuring an optical bus waveguide coupled to a ring tuned to near-infrared wavelengths is used. Raman signal with an excitation wavelength of 522 nm via third-harmonic generation inside the MRR is observed. The higher-order Raman signal of the embedded graphene is also observed at the 1597.6 nm excitation wavelength. This work demonstrates the feasibility of the MRR as a nonlinear signal enhancer using high-Q MRR device setups.\",\"PeriodicalId\":8094,\"journal\":{\"name\":\"Applied Physics Letters\",\"volume\":\"63 1\",\"pages\":\"\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2025-02-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Physics Letters\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0245521\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Physics Letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0245521","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
Raman signal enhancement via a micro-ring resonator
This study presents the use of micro-ring resonator (MRR) devices to extract and enhance nonlinear signals. MRRs “trap” incoming light and, therefore, have been shown to achieve extremely high local intensities of light. Thus, they can be used to facilitate highly nonlinear optical signals that are usually weak in intensity and require high excitation power. By embedding materials that host nonlinear optical processes inside the MRR, we expect to observe an enhancement in the strength of the nonlinear optical signals. This concept is demonstrated here by extracting the Raman signature of graphene that is placed inside a MRR device. A highly doped silica MRR featuring an optical bus waveguide coupled to a ring tuned to near-infrared wavelengths is used. Raman signal with an excitation wavelength of 522 nm via third-harmonic generation inside the MRR is observed. The higher-order Raman signal of the embedded graphene is also observed at the 1597.6 nm excitation wavelength. This work demonstrates the feasibility of the MRR as a nonlinear signal enhancer using high-Q MRR device setups.
期刊介绍:
Applied Physics Letters (APL) features concise, up-to-date reports on significant new findings in applied physics. Emphasizing rapid dissemination of key data and new physical insights, APL offers prompt publication of new experimental and theoretical papers reporting applications of physics phenomena to all branches of science, engineering, and modern technology.
In addition to regular articles, the journal also publishes invited Fast Track, Perspectives, and in-depth Editorials which report on cutting-edge areas in applied physics.
APL Perspectives are forward-looking invited letters which highlight recent developments or discoveries. Emphasis is placed on very recent developments, potentially disruptive technologies, open questions and possible solutions. They also include a mini-roadmap detailing where the community should direct efforts in order for the phenomena to be viable for application and the challenges associated with meeting that performance threshold. Perspectives are characterized by personal viewpoints and opinions of recognized experts in the field.
Fast Track articles are invited original research articles that report results that are particularly novel and important or provide a significant advancement in an emerging field. Because of the urgency and scientific importance of the work, the peer review process is accelerated. If, during the review process, it becomes apparent that the paper does not meet the Fast Track criterion, it is returned to a normal track.