人肠道α-防御素5与结肠上皮受体P2Y11的相互作用促进了志贺氏菌感染

IF 20.5 1区 生物学 Q1 MICROBIOLOGY
Dan Xu, Mengyao Guo, Xin Xu, Gan Luo, Yaxin Liu, Stephen J. Bush, Chengyao Wang, Tun Xu, Wenxin Zeng, Chongbing Liao, Qingxia Wang, Wei Zhao, Wenying Zhao, Yuezhuangnan Liu, Shanshan Li, Shuangshuang Zhao, Yaming Jiu, Nathalie Sauvonnet, Wuyuan Lu, Philippe J. Sansonetti, Kai Ye
{"title":"人肠道α-防御素5与结肠上皮受体P2Y11的相互作用促进了志贺氏菌感染","authors":"Dan Xu, Mengyao Guo, Xin Xu, Gan Luo, Yaxin Liu, Stephen J. Bush, Chengyao Wang, Tun Xu, Wenxin Zeng, Chongbing Liao, Qingxia Wang, Wei Zhao, Wenying Zhao, Yuezhuangnan Liu, Shanshan Li, Shuangshuang Zhao, Yaming Jiu, Nathalie Sauvonnet, Wuyuan Lu, Philippe J. Sansonetti, Kai Ye","doi":"10.1038/s41564-024-01901-9","DOIUrl":null,"url":null,"abstract":"Human enteric α-defensin 5 (HD5) is an immune system peptide that acts as an important antimicrobial factor but is also known to promote pathogen infections by enhancing adhesion of the pathogens. The mechanistic basis of these conflicting functions is unknown. Here we show that HD5 induces abundant filopodial extensions in epithelial cells that capture Shigella, a major human enteroinvasive pathogen that is able to exploit these filopodia for invasion, revealing a mechanism for HD5-augmented bacterial invasion. Using multi-omics screening and in vitro, organoid, dynamic gut-on-chip and in vivo models, we identify the HD5 receptor as P2Y11, a purinergic receptor distributed apically on the luminal surface of the human colonic epithelium. Inhibitor screening identified cAMP-PKA signalling as the main pathway mediating the cytoskeleton-regulating activity of HD5. In illuminating this mechanism of Shigella invasion, our findings raise the possibility of alternative intervention strategies against HD5-augmented infections. HD5 induces filopodial extensions in epithelial cells that the pathogen Shigella exploits to facilitate invasion and infection.","PeriodicalId":18992,"journal":{"name":"Nature Microbiology","volume":"10 2","pages":"509-526"},"PeriodicalIF":20.5000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Shigella infection is facilitated by interaction of human enteric α-defensin 5 with colonic epithelial receptor P2Y11\",\"authors\":\"Dan Xu, Mengyao Guo, Xin Xu, Gan Luo, Yaxin Liu, Stephen J. Bush, Chengyao Wang, Tun Xu, Wenxin Zeng, Chongbing Liao, Qingxia Wang, Wei Zhao, Wenying Zhao, Yuezhuangnan Liu, Shanshan Li, Shuangshuang Zhao, Yaming Jiu, Nathalie Sauvonnet, Wuyuan Lu, Philippe J. Sansonetti, Kai Ye\",\"doi\":\"10.1038/s41564-024-01901-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Human enteric α-defensin 5 (HD5) is an immune system peptide that acts as an important antimicrobial factor but is also known to promote pathogen infections by enhancing adhesion of the pathogens. The mechanistic basis of these conflicting functions is unknown. Here we show that HD5 induces abundant filopodial extensions in epithelial cells that capture Shigella, a major human enteroinvasive pathogen that is able to exploit these filopodia for invasion, revealing a mechanism for HD5-augmented bacterial invasion. Using multi-omics screening and in vitro, organoid, dynamic gut-on-chip and in vivo models, we identify the HD5 receptor as P2Y11, a purinergic receptor distributed apically on the luminal surface of the human colonic epithelium. Inhibitor screening identified cAMP-PKA signalling as the main pathway mediating the cytoskeleton-regulating activity of HD5. In illuminating this mechanism of Shigella invasion, our findings raise the possibility of alternative intervention strategies against HD5-augmented infections. HD5 induces filopodial extensions in epithelial cells that the pathogen Shigella exploits to facilitate invasion and infection.\",\"PeriodicalId\":18992,\"journal\":{\"name\":\"Nature Microbiology\",\"volume\":\"10 2\",\"pages\":\"509-526\"},\"PeriodicalIF\":20.5000,\"publicationDate\":\"2025-02-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Microbiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.nature.com/articles/s41564-024-01901-9\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Microbiology","FirstCategoryId":"99","ListUrlMain":"https://www.nature.com/articles/s41564-024-01901-9","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

人肠道α-防御素5 (HD5)是一种免疫系统肽,作为一种重要的抗菌因子,但也已知通过增强病原体的粘附来促进病原体感染。这些相互冲突的功能的机制基础是未知的。在这里,我们发现HD5在上皮细胞中诱导了丰富的丝足延伸,这些丝足延伸可以捕获志贺氏菌,志贺氏菌是一种主要的人类肠道侵入性病原体,能够利用这些丝足进行入侵,揭示了HD5增强细菌入侵的机制。通过多组学筛选和体外、类器官、动态肠道芯片和体内模型,我们确定HD5受体为P2Y11,一种分布在人类结肠上皮管腔表面的嘌呤能受体。抑制剂筛选发现cAMP-PKA信号通路是介导HD5细胞骨架调节活性的主要途径。在阐明志贺氏菌入侵的这一机制时,我们的发现提出了针对hd5增强感染的替代干预策略的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Shigella infection is facilitated by interaction of human enteric α-defensin 5 with colonic epithelial receptor P2Y11

Shigella infection is facilitated by interaction of human enteric α-defensin 5 with colonic epithelial receptor P2Y11

Shigella infection is facilitated by interaction of human enteric α-defensin 5 with colonic epithelial receptor P2Y11
Human enteric α-defensin 5 (HD5) is an immune system peptide that acts as an important antimicrobial factor but is also known to promote pathogen infections by enhancing adhesion of the pathogens. The mechanistic basis of these conflicting functions is unknown. Here we show that HD5 induces abundant filopodial extensions in epithelial cells that capture Shigella, a major human enteroinvasive pathogen that is able to exploit these filopodia for invasion, revealing a mechanism for HD5-augmented bacterial invasion. Using multi-omics screening and in vitro, organoid, dynamic gut-on-chip and in vivo models, we identify the HD5 receptor as P2Y11, a purinergic receptor distributed apically on the luminal surface of the human colonic epithelium. Inhibitor screening identified cAMP-PKA signalling as the main pathway mediating the cytoskeleton-regulating activity of HD5. In illuminating this mechanism of Shigella invasion, our findings raise the possibility of alternative intervention strategies against HD5-augmented infections. HD5 induces filopodial extensions in epithelial cells that the pathogen Shigella exploits to facilitate invasion and infection.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Microbiology
Nature Microbiology Immunology and Microbiology-Microbiology
CiteScore
44.40
自引率
1.10%
发文量
226
期刊介绍: Nature Microbiology aims to cover a comprehensive range of topics related to microorganisms. This includes: Evolution: The journal is interested in exploring the evolutionary aspects of microorganisms. This may include research on their genetic diversity, adaptation, and speciation over time. Physiology and cell biology: Nature Microbiology seeks to understand the functions and characteristics of microorganisms at the cellular and physiological levels. This may involve studying their metabolism, growth patterns, and cellular processes. Interactions: The journal focuses on the interactions microorganisms have with each other, as well as their interactions with hosts or the environment. This encompasses investigations into microbial communities, symbiotic relationships, and microbial responses to different environments. Societal significance: Nature Microbiology recognizes the societal impact of microorganisms and welcomes studies that explore their practical applications. This may include research on microbial diseases, biotechnology, or environmental remediation. In summary, Nature Microbiology is interested in research related to the evolution, physiology and cell biology of microorganisms, their interactions, and their societal relevance.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信