{"title":"通过定制表面偏析设计双金属纳米颗粒催化剂","authors":"Yaxin Tang, Mingao Hou, Qian He, Guangfu Luo","doi":"10.1021/acs.nanolett.4c05961","DOIUrl":null,"url":null,"abstract":"Bimetallic nanoparticles serve as a vital class of catalysts with tunable properties suitable for diverse catalytic reactions, yet a comprehensive understanding of their structural evolution under operational conditions as well as their optimal design principles remains elusive. In this study, we unveil a prevalent surface segregation phenomenon in approximately 100 platinum-group-element-based bimetallic nanoparticles through molecular dynamics simulations and derive a thermodynamic descriptor to predict this behavior. Building on the generality and predictability of surface segregation, we propose leveraging this phenomenon to intentionally enrich the nanoparticle surface with noble-metal atoms, thereby significantly reducing their usage while maintaining high catalytic activity and stability. To validate this strategy, we investigate dozens of platinum-based bimetallic nanoparticles for propane dehydrogenation catalysis using first-principles calculations. Through a systematic examination of the catalytic sites on nanoparticle surfaces, we eventually identify several candidates featuring a stable Pt-enriched surface and superior catalytic activity, confirming the feasibility of this approach.","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":"11 1","pages":""},"PeriodicalIF":9.1000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Designing Bimetallic Nanoparticle Catalysts via Tailored Surface Segregation\",\"authors\":\"Yaxin Tang, Mingao Hou, Qian He, Guangfu Luo\",\"doi\":\"10.1021/acs.nanolett.4c05961\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Bimetallic nanoparticles serve as a vital class of catalysts with tunable properties suitable for diverse catalytic reactions, yet a comprehensive understanding of their structural evolution under operational conditions as well as their optimal design principles remains elusive. In this study, we unveil a prevalent surface segregation phenomenon in approximately 100 platinum-group-element-based bimetallic nanoparticles through molecular dynamics simulations and derive a thermodynamic descriptor to predict this behavior. Building on the generality and predictability of surface segregation, we propose leveraging this phenomenon to intentionally enrich the nanoparticle surface with noble-metal atoms, thereby significantly reducing their usage while maintaining high catalytic activity and stability. To validate this strategy, we investigate dozens of platinum-based bimetallic nanoparticles for propane dehydrogenation catalysis using first-principles calculations. Through a systematic examination of the catalytic sites on nanoparticle surfaces, we eventually identify several candidates featuring a stable Pt-enriched surface and superior catalytic activity, confirming the feasibility of this approach.\",\"PeriodicalId\":53,\"journal\":{\"name\":\"Nano Letters\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":9.1000,\"publicationDate\":\"2025-02-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.nanolett.4c05961\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.nanolett.4c05961","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Designing Bimetallic Nanoparticle Catalysts via Tailored Surface Segregation
Bimetallic nanoparticles serve as a vital class of catalysts with tunable properties suitable for diverse catalytic reactions, yet a comprehensive understanding of their structural evolution under operational conditions as well as their optimal design principles remains elusive. In this study, we unveil a prevalent surface segregation phenomenon in approximately 100 platinum-group-element-based bimetallic nanoparticles through molecular dynamics simulations and derive a thermodynamic descriptor to predict this behavior. Building on the generality and predictability of surface segregation, we propose leveraging this phenomenon to intentionally enrich the nanoparticle surface with noble-metal atoms, thereby significantly reducing their usage while maintaining high catalytic activity and stability. To validate this strategy, we investigate dozens of platinum-based bimetallic nanoparticles for propane dehydrogenation catalysis using first-principles calculations. Through a systematic examination of the catalytic sites on nanoparticle surfaces, we eventually identify several candidates featuring a stable Pt-enriched surface and superior catalytic activity, confirming the feasibility of this approach.
期刊介绍:
Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including:
- Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale
- Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies
- Modeling and simulation of synthetic, assembly, and interaction processes
- Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance
- Applications of nanoscale materials in living and environmental systems
Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.