节能神经形态阵列的单晶体管-单铁电-忆阻器结构的范德华斯工程

IF 9.1 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Yinchang Ma, Maolin Chen, Fernando Aguirre, Yuan Yan, Sebastian Pazos, Chen Liu, Heng Wang, Tao Yang, Baoyu Wang, Cheng Gong, Kai Liu, Jefferson Zhe Liu, Mario Lanza, Fei Xue, Xixiang Zhang
{"title":"节能神经形态阵列的单晶体管-单铁电-忆阻器结构的范德华斯工程","authors":"Yinchang Ma, Maolin Chen, Fernando Aguirre, Yuan Yan, Sebastian Pazos, Chen Liu, Heng Wang, Tao Yang, Baoyu Wang, Cheng Gong, Kai Liu, Jefferson Zhe Liu, Mario Lanza, Fei Xue, Xixiang Zhang","doi":"10.1021/acs.nanolett.4c06118","DOIUrl":null,"url":null,"abstract":"Two-dimensional-material-based memristor arrays hold promise for data-centric applications such as artificial intelligence and big data. However, accessing individual memristor cells and effectively controlling sneak current paths remain challenging. Here, we propose a van der Waals engineering approach to create one-transistor-one-memristor (1T1M) cells by assembling the emerging two-dimensional ferroelectric CuCrP<sub>2</sub>S<sub>6</sub> with MoS<sub>2</sub> and <i>h</i>-BN. The memory cell exhibits high resistance tunability (10<sup>6</sup>), low sneak current (120 fA), and low static power (12 fW). A neuromorphic array with greatly reduced crosstalk is experimentally demonstrated. The nonvolatile resistance switching is driven by electric-field-induced ferroelectric polarization reversal. This van der Waals engineering approach offers a universal solution for creating compact and energy-efficient 2D in-memory computation systems for next-generation artificial neural networks.","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":"77 1","pages":""},"PeriodicalIF":9.1000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Van der Waals Engineering of One-Transistor-One-Ferroelectric-Memristor Architecture for an Energy-Efficient Neuromorphic Array\",\"authors\":\"Yinchang Ma, Maolin Chen, Fernando Aguirre, Yuan Yan, Sebastian Pazos, Chen Liu, Heng Wang, Tao Yang, Baoyu Wang, Cheng Gong, Kai Liu, Jefferson Zhe Liu, Mario Lanza, Fei Xue, Xixiang Zhang\",\"doi\":\"10.1021/acs.nanolett.4c06118\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Two-dimensional-material-based memristor arrays hold promise for data-centric applications such as artificial intelligence and big data. However, accessing individual memristor cells and effectively controlling sneak current paths remain challenging. Here, we propose a van der Waals engineering approach to create one-transistor-one-memristor (1T1M) cells by assembling the emerging two-dimensional ferroelectric CuCrP<sub>2</sub>S<sub>6</sub> with MoS<sub>2</sub> and <i>h</i>-BN. The memory cell exhibits high resistance tunability (10<sup>6</sup>), low sneak current (120 fA), and low static power (12 fW). A neuromorphic array with greatly reduced crosstalk is experimentally demonstrated. The nonvolatile resistance switching is driven by electric-field-induced ferroelectric polarization reversal. This van der Waals engineering approach offers a universal solution for creating compact and energy-efficient 2D in-memory computation systems for next-generation artificial neural networks.\",\"PeriodicalId\":53,\"journal\":{\"name\":\"Nano Letters\",\"volume\":\"77 1\",\"pages\":\"\"},\"PeriodicalIF\":9.1000,\"publicationDate\":\"2025-02-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.nanolett.4c06118\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.nanolett.4c06118","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

基于二维材料的忆阻器阵列有望用于以数据为中心的应用,如人工智能和大数据。然而,访问单个忆阻器单元并有效控制潜流路径仍然具有挑战性。在这里,我们提出了一种范德华工程方法,通过将新兴的二维铁电CuCrP2S6与MoS2和h-BN组装在一起,来制造一晶体管一记忆电阻器(1T1M)电池。该存储单元具有高电阻可调性(106),低潜流(120 fA)和低静态功率(12 fW)。实验证明了一种大大减少串扰的神经形态阵列。非挥发性电阻开关是由电场诱导的铁电极化反转驱动的。这种范德华工程方法为下一代人工神经网络创建紧凑、节能的二维内存计算系统提供了一种通用的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Van der Waals Engineering of One-Transistor-One-Ferroelectric-Memristor Architecture for an Energy-Efficient Neuromorphic Array

Van der Waals Engineering of One-Transistor-One-Ferroelectric-Memristor Architecture for an Energy-Efficient Neuromorphic Array
Two-dimensional-material-based memristor arrays hold promise for data-centric applications such as artificial intelligence and big data. However, accessing individual memristor cells and effectively controlling sneak current paths remain challenging. Here, we propose a van der Waals engineering approach to create one-transistor-one-memristor (1T1M) cells by assembling the emerging two-dimensional ferroelectric CuCrP2S6 with MoS2 and h-BN. The memory cell exhibits high resistance tunability (106), low sneak current (120 fA), and low static power (12 fW). A neuromorphic array with greatly reduced crosstalk is experimentally demonstrated. The nonvolatile resistance switching is driven by electric-field-induced ferroelectric polarization reversal. This van der Waals engineering approach offers a universal solution for creating compact and energy-efficient 2D in-memory computation systems for next-generation artificial neural networks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nano Letters
Nano Letters 工程技术-材料科学:综合
CiteScore
16.80
自引率
2.80%
发文量
1182
审稿时长
1.4 months
期刊介绍: Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including: - Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale - Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies - Modeling and simulation of synthetic, assembly, and interaction processes - Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance - Applications of nanoscale materials in living and environmental systems Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信