Suhel Khan, Sramana Mukhopadhyay, M. S. Ansari, R. K. Patidar, Saikat Das, Srivathsan Vasudevan
{"title":"便携式Nd:YAG激光增强光声光谱传感乳腺组织:肿瘤治疗。","authors":"Suhel Khan, Sramana Mukhopadhyay, M. S. Ansari, R. K. Patidar, Saikat Das, Srivathsan Vasudevan","doi":"10.1002/jbio.202400430","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>A solid-state laser is preferred for generating light in a photoacoustic (PA) system because of its high energy and coherence. However, conventional Nd:YAG lasers are bulky, complex, and expensive. This article introduces a portable alternative: a custom-built Nd:YAG laser with an in-house power supply that delivers 0–30 A current pulses with a 1500 μs pulse width, providing efficient thermal management. A pockels cell driver generates 10 ns pulses with 3.84 mJ/c<i>m</i>\n <sup>2</sup> laser energy density. Implemented for noninvasive breast cancer diagnosis, The peak frequency obtained from three different samples was 0.23 ± 0.1, 0.26 ± 0.13, and 1.80 ± 0.14 MHz, respectively, for Normal, Fibrotic, and Tumor tissues. In addition to the dominant frequency peaks the spectral energy of the PASR spectra has also been investigated to characterize the breast tissue samples. The developed laser successfully differentiates between carcinoma, fibrocystic disease, and normal breast tissue based on quantitative PA spectral parameters.</p>\n </div>","PeriodicalId":184,"journal":{"name":"Journal of Biophotonics","volume":"18 4","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Portable Nd:YAG Laser-Enhanced Photoacoustic Spectral Sensing for Breast Tissues: Toward Oncological Theranostics\",\"authors\":\"Suhel Khan, Sramana Mukhopadhyay, M. S. Ansari, R. K. Patidar, Saikat Das, Srivathsan Vasudevan\",\"doi\":\"10.1002/jbio.202400430\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>A solid-state laser is preferred for generating light in a photoacoustic (PA) system because of its high energy and coherence. However, conventional Nd:YAG lasers are bulky, complex, and expensive. This article introduces a portable alternative: a custom-built Nd:YAG laser with an in-house power supply that delivers 0–30 A current pulses with a 1500 μs pulse width, providing efficient thermal management. A pockels cell driver generates 10 ns pulses with 3.84 mJ/c<i>m</i>\\n <sup>2</sup> laser energy density. Implemented for noninvasive breast cancer diagnosis, The peak frequency obtained from three different samples was 0.23 ± 0.1, 0.26 ± 0.13, and 1.80 ± 0.14 MHz, respectively, for Normal, Fibrotic, and Tumor tissues. In addition to the dominant frequency peaks the spectral energy of the PASR spectra has also been investigated to characterize the breast tissue samples. The developed laser successfully differentiates between carcinoma, fibrocystic disease, and normal breast tissue based on quantitative PA spectral parameters.</p>\\n </div>\",\"PeriodicalId\":184,\"journal\":{\"name\":\"Journal of Biophotonics\",\"volume\":\"18 4\",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biophotonics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jbio.202400430\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biophotonics","FirstCategoryId":"101","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jbio.202400430","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Portable Nd:YAG Laser-Enhanced Photoacoustic Spectral Sensing for Breast Tissues: Toward Oncological Theranostics
A solid-state laser is preferred for generating light in a photoacoustic (PA) system because of its high energy and coherence. However, conventional Nd:YAG lasers are bulky, complex, and expensive. This article introduces a portable alternative: a custom-built Nd:YAG laser with an in-house power supply that delivers 0–30 A current pulses with a 1500 μs pulse width, providing efficient thermal management. A pockels cell driver generates 10 ns pulses with 3.84 mJ/cm2 laser energy density. Implemented for noninvasive breast cancer diagnosis, The peak frequency obtained from three different samples was 0.23 ± 0.1, 0.26 ± 0.13, and 1.80 ± 0.14 MHz, respectively, for Normal, Fibrotic, and Tumor tissues. In addition to the dominant frequency peaks the spectral energy of the PASR spectra has also been investigated to characterize the breast tissue samples. The developed laser successfully differentiates between carcinoma, fibrocystic disease, and normal breast tissue based on quantitative PA spectral parameters.
期刊介绍:
The first international journal dedicated to publishing reviews and original articles from this exciting field, the Journal of Biophotonics covers the broad range of research on interactions between light and biological material. The journal offers a platform where the physicist communicates with the biologist and where the clinical practitioner learns about the latest tools for the diagnosis of diseases. As such, the journal is highly interdisciplinary, publishing cutting edge research in the fields of life sciences, medicine, physics, chemistry, and engineering. The coverage extends from fundamental research to specific developments, while also including the latest applications.