{"title":"揭示群体蛋白质组学中的暗物质:与认知和衰老相关的单氨基酸多态性泛分析。","authors":"Xiaojing Gao, Yuanyuan Yin, Yiqian Chen, Ling Lu, Jian Zhao, Xu Lin, Jiarui Wu, Qingrun Li, Rong Zeng","doi":"10.1016/j.xgen.2025.100763","DOIUrl":null,"url":null,"abstract":"<p><p>Human proteome data across populations have been analyzed extensively to reveal protein quantitative associations with physiological or pathological states, while the single amino acid polymorphism (SAP) has been rarely investigated. In this work, we introduce a pan-SAP workflow that relies on pan-database searching independent of individual genome sequencing. Using ten cohorts comprising 2,004 individuals related to cognition disorder and aging, we quantify the SAP sites in key proteins, such as apolipoprotein E (APOE) in plasma and cerebrospinal fluid at the proteome level. Specifically, the quantification of heterozygous APOE-C112R, including its abundance and ratio, provides insights into the dosage effect and relationship with cognition disorder, which cannot be interpreted at the genomic level. Furthermore, our approach could precisely track age-related changes in APOE-C112R levels. Taken together, this pan-SAP workflow uncovered existing but hidden SAPs in multi-populations, connecting SAP quantification to disease progression and paving the way for broader proteomic investigations in complex diseases.</p>","PeriodicalId":72539,"journal":{"name":"Cell genomics","volume":" ","pages":"100763"},"PeriodicalIF":11.1000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11872527/pdf/","citationCount":"0","resultStr":"{\"title\":\"Uncovering dark mass in population proteomics: Pan-analysis of single amino acid polymorphism relevant to cognition and aging.\",\"authors\":\"Xiaojing Gao, Yuanyuan Yin, Yiqian Chen, Ling Lu, Jian Zhao, Xu Lin, Jiarui Wu, Qingrun Li, Rong Zeng\",\"doi\":\"10.1016/j.xgen.2025.100763\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Human proteome data across populations have been analyzed extensively to reveal protein quantitative associations with physiological or pathological states, while the single amino acid polymorphism (SAP) has been rarely investigated. In this work, we introduce a pan-SAP workflow that relies on pan-database searching independent of individual genome sequencing. Using ten cohorts comprising 2,004 individuals related to cognition disorder and aging, we quantify the SAP sites in key proteins, such as apolipoprotein E (APOE) in plasma and cerebrospinal fluid at the proteome level. Specifically, the quantification of heterozygous APOE-C112R, including its abundance and ratio, provides insights into the dosage effect and relationship with cognition disorder, which cannot be interpreted at the genomic level. Furthermore, our approach could precisely track age-related changes in APOE-C112R levels. Taken together, this pan-SAP workflow uncovered existing but hidden SAPs in multi-populations, connecting SAP quantification to disease progression and paving the way for broader proteomic investigations in complex diseases.</p>\",\"PeriodicalId\":72539,\"journal\":{\"name\":\"Cell genomics\",\"volume\":\" \",\"pages\":\"100763\"},\"PeriodicalIF\":11.1000,\"publicationDate\":\"2025-02-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11872527/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell genomics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.xgen.2025.100763\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/30 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell genomics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.xgen.2025.100763","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/30 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Uncovering dark mass in population proteomics: Pan-analysis of single amino acid polymorphism relevant to cognition and aging.
Human proteome data across populations have been analyzed extensively to reveal protein quantitative associations with physiological or pathological states, while the single amino acid polymorphism (SAP) has been rarely investigated. In this work, we introduce a pan-SAP workflow that relies on pan-database searching independent of individual genome sequencing. Using ten cohorts comprising 2,004 individuals related to cognition disorder and aging, we quantify the SAP sites in key proteins, such as apolipoprotein E (APOE) in plasma and cerebrospinal fluid at the proteome level. Specifically, the quantification of heterozygous APOE-C112R, including its abundance and ratio, provides insights into the dosage effect and relationship with cognition disorder, which cannot be interpreted at the genomic level. Furthermore, our approach could precisely track age-related changes in APOE-C112R levels. Taken together, this pan-SAP workflow uncovered existing but hidden SAPs in multi-populations, connecting SAP quantification to disease progression and paving the way for broader proteomic investigations in complex diseases.