{"title":"淀粉样蛋白- β动态和阿尔茨海默病脑尺度治疗的网络聚集模型。","authors":"Georgia S Brennan, Alain Goriely","doi":"10.1007/s00285-024-02179-5","DOIUrl":null,"url":null,"abstract":"<p><p>Neurodegenerative diseases are associated with the assembly of specific proteins into oligomers and fibrillar aggregates. At the brain scale, these protein assemblies can diffuse through the brain and seed other regions, creating an autocatalytic protein progression. The growth and transport of these assemblies depend on various mechanisms that can be targeted therapeutically. Here, we use spatially-extended nucleation-aggregation-fragmentation models for the dynamics of prion-like neurodegenerative protein-spreading in the brain to study the effect of different drugs on whole-brain Alzheimer's disease progression.</p>","PeriodicalId":50148,"journal":{"name":"Journal of Mathematical Biology","volume":"90 2","pages":"22"},"PeriodicalIF":2.3000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11787187/pdf/","citationCount":"0","resultStr":"{\"title\":\"<ArticleTitle xmlns:ns0=\\\"http://www.w3.org/1998/Math/MathML\\\">A network aggregation model for amyloid- <ns0:math><ns0:mi>β</ns0:mi></ns0:math> dynamics and treatment of Alzheimer's diseases at the brain scale.\",\"authors\":\"Georgia S Brennan, Alain Goriely\",\"doi\":\"10.1007/s00285-024-02179-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Neurodegenerative diseases are associated with the assembly of specific proteins into oligomers and fibrillar aggregates. At the brain scale, these protein assemblies can diffuse through the brain and seed other regions, creating an autocatalytic protein progression. The growth and transport of these assemblies depend on various mechanisms that can be targeted therapeutically. Here, we use spatially-extended nucleation-aggregation-fragmentation models for the dynamics of prion-like neurodegenerative protein-spreading in the brain to study the effect of different drugs on whole-brain Alzheimer's disease progression.</p>\",\"PeriodicalId\":50148,\"journal\":{\"name\":\"Journal of Mathematical Biology\",\"volume\":\"90 2\",\"pages\":\"22\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11787187/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Biology\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00285-024-02179-5\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Biology","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00285-024-02179-5","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
A network aggregation model for amyloid- β dynamics and treatment of Alzheimer's diseases at the brain scale.
Neurodegenerative diseases are associated with the assembly of specific proteins into oligomers and fibrillar aggregates. At the brain scale, these protein assemblies can diffuse through the brain and seed other regions, creating an autocatalytic protein progression. The growth and transport of these assemblies depend on various mechanisms that can be targeted therapeutically. Here, we use spatially-extended nucleation-aggregation-fragmentation models for the dynamics of prion-like neurodegenerative protein-spreading in the brain to study the effect of different drugs on whole-brain Alzheimer's disease progression.
期刊介绍:
The Journal of Mathematical Biology focuses on mathematical biology - work that uses mathematical approaches to gain biological understanding or explain biological phenomena.
Areas of biology covered include, but are not restricted to, cell biology, physiology, development, neurobiology, genetics and population genetics, population biology, ecology, behavioural biology, evolution, epidemiology, immunology, molecular biology, biofluids, DNA and protein structure and function. All mathematical approaches including computational and visualization approaches are appropriate.